隐函数的偏导数.ppt
一、一个方程所确定的隐函数及其导数,定理1.设函数,则方程,单值连续函数 y=f(x),并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:,具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,机动 目录 上页 下页 返回 结束,导数,例1.验证方程,在点(0,0)某邻域,可确定一个单值可导隐函数,解:令,连续,由 定理1 可知,导的隐函数,则,在 x=0 的某邻域内方程存在单值可,且,机动 目录 上页 下页 返回 结束,并求,两边对 x 求导,两边再对 x 求导,令 x=0,注意此时,导数的另一求法,利用隐函数求导,机动 目录 上页 下页 返回 结束,定理2.,若函数,的某邻域内具有连续偏导数,则方程,在点,并有连续偏导数,定一个单值连续函数 z=f(x,y),定理证明从略,仅就求导公式推导如下:,满足,在点,满足:,某一邻域内可唯一确,机动 目录 上页 下页 返回 结束,两边对 x 求偏导,同样可得,则,机动 目录 上页 下页 返回 结束,例2.设,解法1 利用隐函数求导,机动 目录 上页 下页 返回 结束,再对 x 求导,例3.,设F(x,y)具有连续偏导数,解法1 利用偏导数公式.,确定的隐函数,则,已知方程,机动 目录 上页 下页 返回 结束,故,