欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    教育部课题含有一个量词的命题的否定.ppt

    • 资源ID:5315468       资源大小:545.03KB        全文页数:12页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    教育部课题含有一个量词的命题的否定.ppt

    教育部重点课题新教育子课题 在高中数学教学中如何达到理想课堂的实践,温州市瓯海区三溪中学 张明,1.4.3 含有一个量词的命题 的否定,我们知道命题有否定,那全称命题与特称命题的否定是什么?,我们知道几何中有定理、性质、推论。它们是现实世界中的一个不以人的主观意志而改变的事实,我们只不过通过公理化思想把它们组成一个严密的逻辑系统。从最初的几条公理出发演绎出一个极其严密的逻辑系统。今天我们学习的是逻辑,它本身就是个逻辑系统,但我们不说从最初的几条公理出发去演绎证明。我们把逻辑系统中最初的那几个事实叫做“规定”,相当于公理化系统中的公理。比如全称命题的否定就是种规定,这种规定不是乱规定,而是根据现实中事实来的,这个事实就是:,含有一个量词的全称命题的否定,有下面的结论,它的否定,从形式看,全称命题的否定是特称命题。,这是相当于几何中的公理,前几节课也有个规定也相当于公理。即原命题与逆否命题同真同假。公理是自己不能被证明的,只能证别人。它是证明的起点。,什么是公理?那就是不证自明非常显然的事实,公理是我们证明的原点或起点,从原点或起点出发到达我们要到的地方。证明先从公理开始。证明的起点是显而易见的事实,这事实就是公理。公理是去证别人而自己是不能证明的。,学习数学有个重要的思维能力要培养,那就是抽象思维能力。刚才同学们对 全称命题及否定的学习都是根据具体的模型进行思考,在以后的学习中同学们要学会脱离具体模型进行抽象思维。那就是根据数学上对全称命题的符号定义及真假的规定进行抽象思维,同学们会吗?,我们知道命题有否定,那特称命题的否定是什么?,我们知道几何中有定理、性质、推论。它们是现实世界中的一个不以人的主观意志而改变的事实,我们只不过通过公理化思想把它们组成一个严密的逻辑系统。从最初的几条公理出发演绎出一个极其严密的逻辑系统。今天我们学习的是逻辑,它本身就是个逻辑系统,但我们不说从最初的几条公理出发去演绎证明。我们把逻辑系统中最初的那几个事实叫做“规定”,相当于公理化系统中的公理。比如特称命题的否定就是种规定,这种规定不是乱规定,而是根据现实中事实来的,这个事实就是:,1)所有实数的绝对值都不是正数;,2)每一个平行四边形都不是菱形;,3),否定:,含有一个量词的特称命题的否定,有下面的结论,它的否定,从形式看,特称命题的否定都变成了全称命题.,这是相当于几何中的公理,前几节课也有个规定也相当于公理。即原命题与逆否命题同真同假。公理是自己不能被证明的,只能证别人。它是证明的起点。,什么是公理?那就是不证自明非常显然的事实,公理是我们证明的原点或起点,从原点或起点出发到达我们要到的地方。证明先从公理开始。证明的起点是显而易见的事实,这事实就是公理。公理是去证别人而自己是不能证明的。,学习数学有个重要的思维能力要培养,那就是抽象思维能力。刚才同学们对 全称命题、特称命题及否定的学习都是根据具体的模型进行思考,在以后的学习中同学们要学会脱离具体模型进行抽象思维。那就是根据数学上对全称命题、特称命题的符号定义及真假的规定进行抽象思维,同学们会吗?,含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题.,全称命题真,特称命题假。全称命题假,特称命题真。特称命题真,全称命题假。特称命题假,全称命题真。,

    注意事项

    本文(教育部课题含有一个量词的命题的否定.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开