欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    空间向量的正交分解及其坐标表示课件(人教版).ppt

    • 资源ID:5296839       资源大小:821KB        全文页数:20页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    空间向量的正交分解及其坐标表示课件(人教版).ppt

    ,空间向量的正交分解及其坐标表示,共线向量定理:,复习:,共面向量定理:,平面向量基本定理:,平面向量的正交分解及坐标表示,问题:,我们知道,平面内的任意一个向量 都可以用两个不共线的向量 来表示(平面向量基本定理).对于空间任意一个向量,有没有类似的结论呢?,一、空间向量的坐标分解,给定一个空间坐标系和向量 且设 为空间两两垂直的向量,设点Q为点P在 所确定平面上的正投影.,一、空间向量的坐标分解,由此可知,如果 是空间两两垂直的向量,那么,对空间任一向量,存在一个有序实数组 x,y,z使得 我们称 为向量 在 上的分向量.,空间向量基本定理:,都叫做基向量,探究:在空间中,如果用任意三个不共面向量 代替两两垂直的向量,你能得出类似的 结论吗?,如果三个向量 不共面,那么对空间任一向量,存在有序实数组,使,叫做空间的一个基底,(1)任意不共面的三个向量都可做为空间的一个基底.,特别提示:对于基底,除了应知道 不共面,还应明确:,(2)由于可视 为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是.,(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关连的不同概念.,例1 设 且 是空间的一个基底,给出下列向量组,其中可以作为空间的基底的向量组有()A.1个 B.2个 C.3个 D.4个,分析:能否作为空间的基底,即是判断给出的向量组中的三个下向量是否共面,由于 是不共面的向量,所以可以构造一个平行六面体直观判断,设,易判断出答案,C,例题讲解:,例题讲解,二、空间直角坐标系,以 建立空间直角坐标系Oxyz,若A(x1,y1,z1),B(x2,y2,z2),则,练习1 如图在边长为2的正方体ABCD-A1B1C1D1中,取D点为原点建立空间直角坐标系,O、M、P、Q分别是AC、DD1、CC1、A1B1的中点,写出下列向量的坐标.,探究:向量运算的坐标表示,练习一:,2.求下列两个向量的夹角的余弦:,1.求下列两点间的距离:,例题:,例1已知、,求:(1)线段的中点坐标和长度;,解:设是的中点,则,点的坐标是.,解:设正方体的棱长为1,如图建立空间直角坐标系,则,例3如图,在正方体中,求与所成的角的余弦值.,练习:,x,y,z,建立空间直角坐标系来解题。,

    注意事项

    本文(空间向量的正交分解及其坐标表示课件(人教版).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开