德克萨斯扑克私人定制攻略.docx
俺德克萨斯扑克私人定制攻略德克萨斯扑克全称Texas Hold em poker,中文间称德州扑克。匕是一种玩家对玩家的公共 牌类游戏。一张台面至少2人,最多22人,一般是由2-10人参加。德州扑克一共有52张 牌,没有王牌。每个玩家分两张牌作为“底牌”,五张由荷官陆续朝上发出的公共牌。开始 的时候,每个玩家会有两张面朝下的底牌。经过所有押注圈后,若仍不能分出胜负,游戏会 进入“摊牌”阶段,也就是让所剩的玩家亮出各自的底牌以较高下,持大牌者获胜。因技巧 性强,易学难精又被称为“扑克游戏中的凯迪拉克”。发牌一般分为5个步骤,分别为:Perflop一先下大小盲注,然后给每个玩家发2张底牌,大盲注后面第一个玩家选择跟注、加 注或者盖牌放弃,按照顺时针方向,其他玩家依次表态,大盲注玩家最后表态,如果玩家有 加注情况,前面已经跟注的玩家需要再次表态甚至多次表态。Flop 一同时发三张公牌,由小盲注开始(如果小盲注已盖牌,由后面最近的玩家开始,以此 类推),按照顺时针方向依次表态,玩家可以选择下注、加注、或者盖牌放弃。Turn一发第4张牌,由小盲注开始,按照顺时针方向依次表态。River一发第五张牌,由小盲注开始,按照顺时针方向依次表态,玩家可以选择下注、加注、 或者盖牌放弃。比牌一经过前面4轮发牌和下注,剩余的玩家开始亮牌比大小,成牌最大的玩家赢取池底。比牌方法用自己的2张底牌和5张公共牌结合在一起,选出5张牌,不论手中的牌使用几 张(甚至可以不用手中的底牌),凑成最大的成牌,跟其他玩家比大小。比牌先比牌型,大的牌型大于小的牌型,牌型一般分为10种,从大到小为:同花大顺(Royal Flush):最高为Ace (一点)的同花顺。同花顺(Straight Flush):同一花色,顺序的牌。四条(Four of a Kind,亦称“铁支”、“四张”或“炸弹”):有四张同一点 数的牌。“夫佬”、“葫芦”):三张满堂红(Fullhouse,亦称“俘虏”、“骷髅”、 同一点数的牌,加一对其他点数的牌。同花(Flush,简称“花”:五张同一花色的牌。由111S顺子(Straight,亦称“蛇”):五张顺连的牌。三条(Three of a kind,亦称“三张”):有三张同一点数的牌。两对(Two Pairs):两张相同点数的牌,加另外两张相同点数的牌。国111SSa一对(One Pair):两张相同点数的牌。*-10高牌(high card):不符合上面任何一种牌型的牌型,由单牌且不连续不同花 的组成,以点数决定大小。在网上的在线德州扑克室里通常德州扑克分三大类:有限下注桌(Limit Texas); 压注限制桌(pot limit);无限下注桌(No-Limit)。有限下注每轮下注过程中,最高下注额有一定限制。以2-4有限下注德州扑克为例:2和 4两个数字是指最低下注额,2是指第一轮第二轮下注的最低下注额为$2, 4是 指第三轮第四轮下注的最低下注额为$4,每轮下注过程中最多只能加注三次,第 一轮第二轮下注过程中每次加注只能加$2,比如第一个玩家下注$2,第二个玩家 加注只能是$4,第三个玩家加注只能是$6,第四个玩家再加注只能是$8, $8为 这一轮的最高下注额,后面的玩家只能跟注不能再加注;第三轮第四轮下注过程 中每次加注只能加$4,比如第一个玩家下注$4,第二个玩家加注只能是$8,第三 个玩家加注只能是$12,第四个玩家再加注只能是$16, $16为这一轮的最高下注 额,后面的玩家只能跟注不能再加注。象3-6, 4-8, 10-20,50-100有限下注德 州扑克下注过程的限制是一样的,只是最低下注额不同而已。1压注限制 指每轮下注过程中,下注额有一定限制,你如果要加注,加注额最多只能是桌面 玩家下注额的总数。无限下注是指每轮下注过程中,下注额没有任何限制,但你如果要加注,加注额最少要是 你前面玩家下注额的两倍。比如你前面玩家下注$10,你可以加注到$50,你后面 玩家若要加注,则最少要下注$100,当然他也可以加注到$200或$500。所以无 限下注德州扑克是一种风险更大但更富挑战性刺激性的游戏。德州扑克一共有52张牌,没有王牌。在所有玩家投下赌注之前,对手的手牌(即手中持有 的牌)是无从得知的,因为每个玩家手上的牌都有1236种排列组合。球红桃梅花方块起手拿到一对(:小于导于7的对子)概率起手拿到一对C大于7的时子)概率AA&A3. 40K2. 91黑2222起手幸到一张A的概率其它牌相同起手拿到一张A张K的概率332315. S3盟15. S 3*15. 5部=2- 4114444起手拿到一殊牌大于等于1弟概率注:曲手薜.对子可博/单薰技有大于 10的底牌.弄牌.555515. 531£*5=77_ 听酷弓G66T7778S08999910101010JJJJ0QQ0KKE总共L236WW首先,有个概念叫出牌。所谓出牌,就是有多少张牌能够做成大牌。比如你有2张同花,前三张有2张同花。一副 牌有13张同花,所以你还有13-2-2=9张出牌才能做成同花。明白了出牌,概率就比较好算了。这就是所谓的4/2法则。如果你要等转牌和河牌2张牌做牌,那么概率就是出牌数乘以4,如果你只能等1张牌做牌,概率就是出牌数乘以2。比如做同花,前三张和手牌有4张花的。转牌出花的概率是9*2=18%,转牌+河牌出花的概率是 9*4=36%。两头的顺子有8张出牌,转牌出顺的概率是8*2=16%,转牌+河牌出顺德概率是32%。有顺有花的话按照出牌和4/2法则自己估算51德州扑克最简单的概率计算方法今天小编在这里为大家说说51德州扑克概率计算方法,其实现在都在用最简单的扑克概率 计算方法高手都在用的4-2法则:请看下面的分析:4-2法则方法/步骤在德州扑克里,存在一个简单快捷的计算法则,就是4-2法则。首先我计 算我的“出牌”,或者将给我一个赢手的牌。例如,让我们说我拥有梅 花10方片9而我认为我的对手是A-K(当它翻开,是黑桃A方块K)。翻 牌来了 梅花A方片10红桃7。我的对手领先,当然了,翻到一对A,但 这有五张牌一一余下的两张十和三张九将让我领先。换句话说,我 有五张出牌。我能计算在转牌或河牌抓到一张我的牌的近似的概率,通过用四乘以 出牌数。在这个例子中:5X4=20%根据这个“四法则”我有大概20%的机会抓到一张赢牌在转牌或河牌。 实际翻出的概率是22%,一个微小的不同无关宏旨。扑克赔率计I 号昌 大源家的助手? 了解也poker news匿灿姗sc皈盛伽Seat 21仅有河牌要来,“四法则”变成“二法则”。我们说转牌来了 梅花 8。我们找的五个出牌没有来,但它让我们的手牌变成两头顺子兆牌能用 任何一张J或6凑成顺。增加的八个出牌总共给我们十三张出牌。用“二 法则”:13X2=26%实际翻出的百分比是30%,但再次的,那已经足够接近。扑克赔率计算器 大赢家的助手:了解福POKERfieWS帔顷g皿响(注释:“四法则“被轻微地打破在有大数量的出牌时。当有十五个或更 多的出牌,公式对赢的机会估计过高,但当有那么多出牌,赢的机会如此 大使得将几乎没有问题。加上,你通常仅在奥马哈里有那么多出牌,在无 限德州扑克里很少有。)4-2法则是基于读牌的概率计算方法,比如上文当中举的例子,假如 对手不是A10,而是对10,那么翻牌后9,10的胜率就为0 了!所以这个 法则是非常实用的,不准确的只是自己对对方底牌的猜测。说到这里希望给大家得到帮助,还好更多好玩的游戏,一切尽在51.c om。祝大家在51德轴扑克玩得开心!Poker Hand牌的组合出现概率Royal Flush 皇家同花顺 649,739:1Straight Flush 同花顺 64,973:1Four-of-a-Kind 四条 4,164:1Full House 葫芦 693:1Flush 同花色 508:1Straight 顺子 254:1Three-of-a-Kind 三条 46:1Two Pair 二对 20:1One Pair 一对 1.25:1No Pair 没对子 1.002:1加注再加注技巧最常用的时候莫过于我们牌很好时,如果这个时候你还能敏锐地察觉到对手 并不想退缩,通过加注再加注的方法,可以快速地构建一个非常大的彩池,从而让你赢得更 多。另一个适合加注再加注技巧的时机是你想要减少你的对手,这种情况往往在你拿到大底 牌时发生,比如AA和KK,它们在对抗少量对手时非常凶悍,然而随着对手的增加,你的 对手抽牌、凑到比你更大的牌的机率也急速上升,因此,这个时候加注再加注,可以避免你 的对手只用少量的赌注来换取抽牌、拿到大牌的机会,而让你的大底牌不至于贬值。在你处于后位时,通过加注再加注的技巧,可以让你以更小的投入来看到河牌。举一个例子 来说明,你持AQ,在公共牌发下来前加注一一这也确实是一手值得加的牌,对手持KJ跟注, 公共牌翻开KQ5,对手选择了加注,这时你很容易猜测到对手手中有K,但是现在放弃又很 是可惜,因此你也可以加注,让对手看不明白你的牌,误以为公共牌帮到了你,转牌发下来 是6,没有帮你们两个任何一个,但是对手却很可能由于你之前的加注,不敢加大注码对你 进行逼迫(如果他真的这么做,你可能只有弃牌了,因为再投入确实是非常不明智的),因 此你就可以看到一张免费的河牌,如果河牌开出Q来,你就可以漂亮地赢得这一局。我们 这样做是把希望寄于河牌之上,但是如果之前不加注,我们很可能在看到河牌之前就不得不 弃牌。''加注再加注是有些注德州扑克中常用技巧之一,也是试探对手牌型的典型技巧之一。特别 在面对一些谨慎的对手时,然而如果对方牌不够好,他很可能会在你的压力下放弃,那你可 以乘胜追击。但是如果他面对你加注再加注的攻击毫不退缩地和你对抗,这时候弃牌是最好 的选择。通过对手的反应,基本可以判断对手的牌型。对手牌不够好或者心理素质不够强, 很可能在你的逼迫下选择弃掉比你更大的牌,就能兵不血刃地获得胜利,所以加注再加注技 巧深受玩家欢迎。Poker probabilityFrom Wikipedia, the free encyclopediaJump to: navigation, searchSee also Poker probability (Texas hold 'em) and Poker probability (Omaha) for probabilities specific to those games.广This article does not cite any references or sources. Please help improve this article1 by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2008)In poker, the probability of each type of 5-cardhand can be computed by calculating the proportion of hands of that type among all possible hands.Contentshide1 Frequency of 5-card poker hands1.1 Derivation of frequencies of 5-card poker hands.2 Frequency of 7-card poker handso 2.1 Derivation of frequencies of 7-card poker hands. 3 Frequency of 5-card lowball poker handso 3.1 Derivation of frequencies for 5-card lowball hands 4 Frequency of 7-card lowball poker handso 4.1 Derivation of frequencies for 7-card lowball hands 5 See also 6 Notes 7 External linksFrequency of 5-card poker handseditThe following chart enumerates the (absolute) frequency of each hand, given all combinations of 5 cards randomly drawn from a full deck of 52 without replacement. Wild cards are not considered. In this chart: "Distinct Hands" is the number of different ways to draw the hand, not counting different suits. "Frequency" is the number of ways to draw the hand,including the same card values in different suits The "probability" of drawing a given hand is calculated by dividing the number of ways of drawing the hand ("Frequency") by the total number of 5-card hands (thesample space: (T) = 2,598,960).For example, there are 4 different ways to draw a Royal flush (one for each suit), so the probability is4/2,598,960, or about 0.000154%. The "Cumulative probability" refers to the probability of drawing a hand as good asor better than the specified one. For example, the odds of drawing three of a kind are approximately 2.11%, while the odds of drawing a hand at least as good as three of a kind are about 2.87%. The cumulative probability is determined by adding one hand's probability with the probabilities of all hands above it. The odds are defined as the ratio of the number of ways not to draw the hand, to the number of ways to draw it. For instance, with a Royal flush, there are 4 ways to draw one, and 2,598,956 ways to draw something else (2,598,960 - 4), so the odds against drawinga Royal flush are 2,598,956 : 4, or 649,739 : 1. The formula for establishing the odds can also be stated as (1/p) -1:1, where p is the aforementioned probability. The values given for "probability", "Cumulative probability", and "odds" are rounded off for simplicity: the "Distinct hands" and "Frequency" values are exact.The nCr function on most scientific calculators can be used to calculate hand frequencies; entering nCr with 52 and 5, for example, yields(V) = 2,598,960 片, ' 'as above.DistincCumulativFrequenc Probabilit Hand teOddsMathematical expression ofabsolute frequencyy y HandsprobabilityRoyal flush0.000154649,7390.000154%:1Straight flush (not including royal flush)9360.00139%0.00154%Four of akind1566240.0240% 0.0256% 4,164 : 1皿house1563,7440.144%0.17%693 : 113 /4 Z12 /4Flush(excluding royalflush andstraightflush)13 /4101,2775,1080.197%0.367%508 : 1Straight(excluding royalflush andstraightflush)1010,2000.392%0.76%254 : 1Three ofa kind85854,9122.11%2.87%46.3 : 1Two pair858123,5524.75%7.62%One pair2,860 1,098,240 42.3%49.9%1.36 : 1No pair /High card1,277 1,302,54050.1%100%0.995 : 1Total 7,462 2,598,960100%.普)The royal flush is a case of the straight flush. It can be formed 4 ways (one for each suit), giving it a probability of 0.000154% and odds of 649,739 : 1.When ace-low straights and ace-low straight flushes are not counted, the probabilities of each are reduced: straights and straight flushes each become 9/10 as common as they otherwise would be. The 4 missed straight flushes become flushes and the 1,020 missed straights become no pair.Note that since suits have no relative value in poker, two hands can be considered identical if one hand can be transformed into the other by swapping suits. For example, the hand3* 7* 陲 Q A is identical to 3 7 8 QV AV because replacing all of the clubs in the first hand with diamonds and all of the spades with hearts produces the second hand. So eliminating identical hands that ignore relative suit values, there are only 134,459 distinct hands.The number of distinct poker hands is even smaller. For example, 3* 7* 8垒曜 and 3 7* 8 QV AV are not identical hands when just ignoringsuit assignments because one hand has three suits, while the other hand has only twothat difference could affect the relative value of each hand when there are more cards to come. However, even though the hands are not identical from that perspective, they still form equivalent poker hands because each hand is an A-Q-8-7-3 high card hand. There are 7,462 distinct poker hands.Derivation of frequencies of 5-card poker hands editThe following computations show how the above frequencies for 5-card poker hands were determined. To understand these derivations, the reader should be familiar with the basic properties of the binomial coefficients and their interpretation as the number of ways of choosing elements from a given set. See also: sample space and event (probability theory) Straight flush Each straight flush is uniquely determined by its highest-ranking card. These ranks go from 5 (A2345 ) up to A (10JQKA) in each of the 4 suits. Thus, thetotal number of straight flushes is:o Royal straight flush A royal straight flush is a subset of all straight flushes in which the ace is the highest card (i.e. 10JQKA in any of the four suits). Thus, the total number of royal straight flushes is(3 =4or simply、. Note: this means that the total number of non-Royal straight flushes is 36. Four of a kind Any one of the thirteen ranks can form the four of a kind by selecting all four of the suits in that rank. The final card can have any one of the twelve remaining ranks, and any suit. Thus, the total number of four-of-a-kinds is:H (:) (¥) G)=624Full house The full house comprises a triple (three of a kind) and a pair. The triple can be any one of the thirteen ranks, and consists of three of the four suits. The pair can beany one of the remaining twelve ranks, and consists of two of the four suits. Thus, the total number of full houses is:Flush The flush contains any five of the thirteen ranks, all of which belong to one of the four suits, minus the 40 straight flushes. Thus, the total number of flushes is:Straight The straight consists of any one of the ten possible sequences of five consecutive cards, from 5432A to AKQJ10 . Each of these five cards can have any one of the four suits. Finally, as with the flush, the 40 straight flushes must be excluded, giving:Three of a kind Any of the thirteen ranks can form the three of a kind, which can contain any three of the four suits. The remaining two cards can have any two of the remaining twelve ranks, and each can have any of the four suits. Thus, the total number of three-of-a-kinds is:(筑)('涧52Two pair The pairs can have any two of the thirteen ranks, and each pair can have two of the four suits. The final card can have any one of the eleven remaining ranks, and any suit. Thus, the total number of two-pairs is:(?)(押)(3=123,552Pair The pair can have any one of the thirteen ranks, and any two of the four suits. The remaining three cards can have any three of the remaining twelve ranks, and each can have any of the four suits. Thus, the total number of pair hands is: No pair A no-pair hand contains five of the thirteen ranks, discounting the ten possible straights, and each card can have any of the four suits, discounting the four possible flushes. Alternatively, a no-pair hand is any hand that does not fall into one of the above categories; that is, the complement of the union of all the above hands, where the universe is any way to choose five out of 52 cards. Thus, the total number of no-pair hands is:Any five card poker hand The total number of five card hands that can be drawn froma deck of cards is found using a combination selecting five cards, in any order where n refers to the number of items that can be selected and r to the sample size; the "!" is the factorial operator:Frequency of 7-card poker handseditIn some popular variations of poker, a player uses the best five-card poker hand out of seven cards. The frequencies are calculated in a manner similar to that shown for 5-card hands, except additional complications arise due to the extra two cards in the 7-card poker hand. The total number of distinct 7-card hands is7一 '"七 土'.""). It is notable that the probability of a no-pairhand is less than the probability of a one-pair or two-pair hand.The Ace-high straight flush or royal flush is slightly more frequent (4324) than the lower straight flushes (4140 each) because the remaining two cards can have any value; a King-high straight flush, for example, cannot have the Ace of its suit in the hand (as that would make it ace-high instead).HandFrequency Probability Cumulative OddsRoyal flush4,324 0.0032%0.0032%30,939 : 1Straight flush (excl. royal flush)37,260 0.0279%0.0311%Four of a kind224,848 0.168%0.199%Full house3,473,184 2.60%2.80%Flush4,047,644 3.03%5.82%Straight6,180,020 4.62%10.4%Three of a kind6,461,620 4.83%15.3%Two pair31,433,400 23.5%38.8%One pair58,627,800 43.8%82.6%No pair23,294,460 17.4%100%Total133,784,560