欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    弧形、扇形公式解说和运用.docx

    • 资源ID:5284847       资源大小:159.07KB        全文页数:8页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    弧形、扇形公式解说和运用.docx

    是它所在圆的面积的一部分,因为圆心角是360°,所以圆心角为1°的扇形面积是3如,由此得圆心角为n°又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:弧形、扇形公式解说和运用知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:罚说明:(1)在弧长公式中,n表示1 °的圆心角的倍数,n和180都不带单位“度”, 例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成(2)在弧长公式中,已知1,n,R中的任意两个量,都可以求出第三个量。知识点2、扇形的面积如图所示,阴影部分的面积就是半径为日,圆心角为n°的扇形面积,显然扇形的面积知识点3、弓形的面积(1) 弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。(2) 弓形的周长=弦长+弧长(3) 弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把 扇形OAmB的面积和 AOB的面积计算出来,就可以得到弓形AmB的面积。当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,例:如图所示,。的半径为2,ZABC=45°,则图中阴影部分的面积是()(结果用打表示)分析:由图可知S阴第=%彩的祯一乩强6由圆周角定理可知/ABC=/AOC,所以 /AOC=2/ABC=90°,所以 OAC是直角三角形,所以kOAC =-如,0C = x2x2 = 2,电唐脉己=液而心"=",所以命刷=港哽-Saoac =兀一 2注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。圆周长弧长圆曲积扇形面积公式C =C = ndS=360S=jcR2 360S= |1R(2)扇形与弓形的联系与区别(2)扇形与弓形的联系与区别图示m4Wm面积S弓膨=海耦一 &£弓另=亍£旦£弓厂慈E知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为1,底面圆的半径为r,那么这个扇形的半径为1,扇形的弧长为2坪,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。知识点5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长, 若圆柱的底面半径为r,高为h,则圆柱的侧面积临*职",圆柱的全面积 & = *幌+S隧=上琨+(处+ f)知识小结:圆锥与圆柱的比较名称圆锥圆柱图形J1 1' Jc图形的形成过程由一个直角三角形旋转得到 的,如RtASOA绕直线SO 旋转一周。由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。图形的组成一个底面和一个侧面两个底面和一个侧面侧面展开图的特征扇形矩形面积计算方法s冬=Sg += 70-1+ -JIT2M.tj.= 2 输$冬=+ 25 = 2nrh+ Sirr-3F3冲.【典型例题】例1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,/AOB=120°, 则阴影部分的面积是()A.牝 B. C. 3 D.分析:阴影部分所在的两个扇形的圆心角为硕° SB =3印。-顷° =24苻所以7TX12 =2ir 360故答案为:B.例2. (2004 陕西)如图所示,点C在以AB为直径的半圆上,连接AC, BC, AB=10 厘米,tan/BAC=,求阴影部分的面积。分析:本题考查的知识点有:(1)直径所对圆周角为90°,(2)解直角三角形的知 识(3)组合图形面积的计算。解:因为AB为直径,所以/ACB=90°,3BC在 RtAABC 中,AB = 10, tan/BAC=云,而 tan/BAC= AC设BC=3k,AC=4k,(k不为0,且为正数)由勾股定理得+ 1就=1叽所以k = 2aabc = x= 24= 7()2 = "T所以 BC=6,AC=8,而 222阴影=§半国-Saabc = v71-24所以例3. (2003.福州)如图所示,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇 形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AFXED交ED的延长线于F, 垂足为F,如果正方形的边长为1,那么阴影部分的面积为()分析:连接OD,由正方形性质可知ZEOD=ZDOC=45°,在RtAOED中,OD =因为正方形的边长为1,所以OE=DE=1,所以0D = 2,设两部分阴影的面积中的 一部分为M,另一部分为N,则取=膈阳尝E &应理顶=E契如矿膈和g,阴影部分面 积可求,但这种方法较麻烦,用割补法解此题较为简单,设一部分空白面积为P,因为/BOD=/DOC,所以'腐跄BOD = S南跄DCIA,所以M + SaQED = P+ Si0CD)所以写口曲=a0CD所以M=P,所以'阴影= M + N = P + N = §球 CAFD = &跄 OAFE 一 '正行愈 口。阳=如, 0A - 0E2 = V? - 1 答案:好。例 4.如图所示,直角梯形 ABCD中,/B=90°,ADBC,AB = 2,BC=7,AD = 3, 以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。分析:将直角梯形ABCD绕BC旋转一周所得的几何体是由相同底面的圆柱和圆锥组 成的,所得几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面积三者之和。解:作DHLBC于H,所以DH= AB=2CH=BCBH=BCAD=73=4在 CDH中,CD = 7DH2 + CH2 = J 淀+=所以=希球+电剧+电="为淄+如演何+ "伽)=4岳+或例5. (2003.宁波)已知扇形的圆心角为120°,面积为300打平方厘米(1)求扇形的弧长。(2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少?§=ttR2分析:(1)由扇形面积公式 3佃,可得扇形半径R,扇形的弧长可由弧长S =公式3如求得。(2)由此扇形卷成的圆锥如图所示,这个圆锥的轴截面为等腰三角形ABC,(1)问中求得的弧长是这个圆锥的底面圆周长,而圆周长公式为C=2r,底面圆Saabc=-ad*bc半径r即CD的长可求,圆锥的高AD可在RtAADC中求得,所以可求。解:(1)设扇形的半径为R,= JLttR2 300tt = ttR2由'硕 ,得 3印,解得R=30.1 = =1££2!30 = 20tt所以扇形的弧长1知 1知(厘米)。(2)如图所示,在等腰三角形ABC中,AB= AC=R=30,BC=2r,底面圆周长C= 2疗r,因为底面圆周长即为扇形的弧长,所以乏鼐工烦所以r = “在RtAADC中,高aD=Jh*8 =痴项”=冗也SiAEC = lAD*BC=ix20j2 x20 = 2002所以轴截面面积(平方厘米)。【模拟试题】(答题时间:40分钟)-、选择题1. 若一个扇形的圆心角是45°,面积为2口,则这个扇形的半径是()A. 4 B. 2也 C. 47月D. 2也 口2,扇形的圆心角是60则扇形的面积是所在图面积的(A. 3 B. 6 C. 9 D. 123. 扇形的面积等于其半径的平方,则扇形的圆心角是(180°360°A. 90° B.兀 C.兀 D.180°4. 两同心圆的圆心是0,大圆的半径是以OA,OB分别交小圆于点M, N.已知大圆半 径是小圆半径的3倍,则扇形OAB的面积是扇形OMN的面积的()A. 2倍 B. 3倍 C. 6倍 D. 9倍5. 半圆O的直径为6cm,/BAC=30°,则阴影部分的面积是()A SW A.C. 公B. 46用一个半径长为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面半径为()A. 2cm B. 3cm C. 4cmD. 6cm7.圆锥的全面积和侧面积之比是3 : 2A. 30° B. 60 ° C. 90°这个圆锥的轴截面的顶角是(D. 120°8. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆,且它们的侧面积之比为1 : 2,则它们的高之比为()A. 2: 1 B. 3: 2C. 2扼:黄D. 5: 2也9. 如图,在AABC中,/C =RtZ,AC > BC,若以AC为底面圆半径,BC为高的圆锥 的侧面积为S1,以BC为底面圆半径,AC为高的圆锥的侧面积为S2,则()A. S1 = S2 B. S1 > S2 C. S1 < S2 D. S1、S2 的大小关系不确定二、填空题1. 扇形的弧长是12只cm,其圆心角是90°,则扇形的半径是 cm,扇形的面积是 cm2.2. 扇形的半径是一个圆的半径的3倍,且扇形面积等于圆面积,则扇形的圆心角是,3. 已知扇形面积是12cm2,半径为8cm,则扇形周长为.4在ABC中,AB = 3,AC=4,Z A=90°,把RtAABC绕直线AC旋转一周得到一 个圆锥,其全面积为S把RtAABC绕AB旋转一周得到另一个圆锥,其全面积为S2,则 S: S2 =。15. 一个圆柱形容器的底面直径为2cm,要用一块圆心角为240°的扇形铁板做一个圆锥形 的盖子,做成的盖子要能盖住圆柱形容器,这个扇形的半径至少要有 cm。6,如图,扇形AOB的圆心角为60°,半径为6cm,C,D分别是晶 的三等分点,则阴 影部分的面积是。7.如图正方形的边长为2,分别以正方形的两个对角顶点为圆心,以2为半径画弧,则阴影部分面积为三、计算题1.如图,在RtAABC中,AC= BC,以A为圆心画弧&F,交AB于点D,交AC延长 线于点F,交BC于点E,若图中两个阴影部分的面积相等,求AC与AF的长度之比(只 取3)。F2, 一个等边圆柱(轴截面是正方形的圆柱)的侧面积是S,另一个圆锥的侧面积是S ,如果圆锥和圆柱等底等高,求沃.3, 圆锥的底面半径是R,母线长是3R, M是底面圆周上一点,从点M拉一根绳子绕圆 锥一圈,再回到M点,求这根绳子的最短长度.【试题答案】一、选择题1. A2. B3. C4. D5. B6. B7. B8. C9. B二、填空题1、24144打2、40°3、19cm4、3: 45、36、2汗7、2刃'-4三、计算题1、连接AE,则膈的=S部厂膈八所以AC:AF = &22、禹$3、连接展开图的两个端点MM',即是最短长度。-R利用等量关系得出/MAM'=120°,/AMD=30°, AD= 2 ,

    注意事项

    本文(弧形、扇形公式解说和运用.docx)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开