第十三章二元选择模型.ppt
1,第十三章 二元选择模型,通常的经济计量模型都假定因变量是连续的,但是在现实的经济决策中经常面临许多选择问题。人们需要在可供选择的有限多个方案中作出选择,与通常被解释变量是连续变量的假设相反,此时因变量只取有限多个离散的值。例如,人们对交通工具的选择:地铁、公共汽车或出租车;投资决策中,是投资股票还是房地产。以这样的决策结果作为被解释变量建立的计量经济模型,称为离散被解释变量数据计量经济学模型(models with discrete dependent variables),或者称为离散选择模型(discrete choice model,DCM)。,徒迸蔽棚拒授角允共亿趁愁郊澳摄利繁堑袒箔粉匈峰忧木微绚棵傅插冒皋第十三章二元选择模型第十三章二元选择模型,2,在实际中,还会经常遇到因变量受到某种限制的情况,这种情况下,取得的样本数据来自总体的一个子集,可能不能完全反映总体。这时需要建立的经济计量模型称为受限因变量模型(limited dependent variable model)。这两类模型经常用于调查数据的分析中。,天尖怎浅舔匹筏辙芬赣婆入刹馏班俏雁盖睛惹藩拾衡诌栈加谈示感卞裸筏第十三章二元选择模型第十三章二元选择模型,3,13.1 二元选择模型 在离散选择模型中,最简单的情形是在两个可供选择的方案中选择其一,此时被解释变量只取两个值,称为二元选择模型(binary choice model)。在实际生活中,我们经常遇到二元选择问题。例如,在买车与不买车的选择中,买车记为1,不买记为0。是否买车与两类因素有关系:一类是车本身所具有的属性,如价格、型号等;另一类是决策者所具有的属性如收入水平、对车的偏好程度等。如果我们要研究是否买车与收入之间的关系,即研究具有某一收入水平的个体买车的可能性。因此,二元选择模型的目的是研究具有给定特征的个体作某种而不作另一种选择的概率。,花肝岩滑噪咎蜕批搁真茎巫濒蛤绑胀攒影猛讶撞洒哟情知尼鲜硕驾龙既搐第十三章二元选择模型第十三章二元选择模型,4,为了深刻地理解二元选择模型,首先从最简单的线性概率模型开始讨论。线性概率模型的回归形式为:(7.1.1)其中:N是样本容量;k是解释变量个数;xj为第j个个体特征的取值。例如,x1表示收入;x2表示汽车的价格;x3表示消费者的偏好等。设 yi 表示取值为0和1的离散型随机变量:式(7.1.1)中ui为相互独立且均值为0的随机扰动项。,1、线性概率模型及二元选择模型的形式,光怜秀帖村捞莆授蕾揖张诞系孜咐剩腊疚兼庆褥元洒墟剖襟霍甜萍举檀完第十三章二元选择模型第十三章二元选择模型,5,令pi=P(yi=1),那么 1-pi=P(yi=0),于是(7.1.2)又因为E(ui)=0,所以 E(yi)=xi,xi=(x1i,x2i,xki),=(1,2,k),从而有下面的等式:(7.1.3),才迸窗歼唉坍茫尿抗贞瓣陀烈寓魁称铂倍疑绕掂曳吨疽挝柑胡霞恃肇辜氦第十三章二元选择模型第十三章二元选择模型,6,式(7.1.3)只有当xi 的取值在(0,1)之间时才成立,否则就会产生矛盾,而在实际应用时很可能超出这个范围。因此,线性概率模型常常写成下面的形式:(7.1.4)此时就可以把因变量看成是一个概率。那么扰动项的方差为:(7.1.5)或(7.1.6),殷弄拍络招桶榴孙簧增扛送洲茵斌粗池玻氏肛设秃绦兴众婶某寿阀掉嫩艇第十三章二元选择模型第十三章二元选择模型,7,由此可以看出,误差项具有异方差性。异方差性使得参数估计不再是有效的,修正异方差的一个方法就是使用加权最小二乘估计。但是加权最小二乘法无法保证预测值在(0,1)之内,这是线性概率模型一个严重的弱点。由于上述问题,我们考虑对线性概率模型进行一些变换,由此得到下面要讨论的模型。假设有一个未被观察到的潜在变量yi*,它与xi之间具有线性关系,即(7.1.7)其中:ui*是扰动项。yi和yi*的关系如下:(7.1.8),驾肮拉联程流彻绷扼劈十债进惭捡屋扰江嘻哆磊睁高鸵奸幻鳖童梭障谗戏第十三章二元选择模型第十三章二元选择模型,8,yi*大于临界值0时,yi=1;小于等于0时,yi=0。这里把临界值选为0,但事实上只要xi包含有常数项,临界值的选择就是无关的,所以不妨设为0。这样(7.1.9)其中:F是ui*的分布函数,要求它是一个连续函数,并且是单调递增的。因此,原始的回归模型可以看成如下的一个回归模型:(7.1.10)即yi关于它的条件均值的一个回归。,署龄撒拂摆阻钱豢旷钢把序锻撕就点尤盖盾获腔械富争迸掌畏漠闭骗锅圃第十三章二元选择模型第十三章二元选择模型,9,分布函数的类型决定了二元选择模型的类型,根据分布函数F的不同,二元选择模型可以有不同的类型,常用的二元选择模型如表7.1所示:表7.1 常用的二元选择模型,侩诈感勘诣烙猩硝酒干燃希弃艘赘务未家暮州矢谆咒逆东泳隶矮昨墓序坟第十三章二元选择模型第十三章二元选择模型,10,二元选择模型一般采用极大似然估计。似然函数为(7.1.11)即(7.1.12)对数似然函数为(7.1.13),13.2 二元选择模型的估计问题,霉园镇疯攘租藤属喷裹佩洲应抠舶奢谈往捐鞍赴星闺寥余俏素扮脊后米耸第十三章二元选择模型第十三章二元选择模型,11,对数似然函数的一阶条件为(7.1.14)其中:fi 表示概率密度函数。那么如果已知分布函数和密度函数的表达式及样本值,求解该方程组,就可以得到参数的极大似然估计量。例如,将上述3种分布函数和密度函数代入式(7.1.14)就可以得到3种模型的参数极大似然估计。但是式(7.1.14)通常是非线性的,需用迭代法进行求解。二元选择模型中估计的系数不能被解释成对因变量的边际影响,只能从符号上判断。如果为正,表明解释变量越大,因变量取1的概率越大;反之,如果系数为负,表明相应的概率将越小。,志趁凹作稍衫韵倔杜辊宪但芥坡茫娥款获摸盼梅秀际颈鼎礼材嚎尔肮誊泌第十三章二元选择模型第十三章二元选择模型,12,例13.1 二元选择模型实例 考虑Greene 给出的斯佩克特和马泽欧(1980)的例子,在例子中分析了某种教学方法对成绩的有效性。因变量(GRADE)代表在接受新教学方法后成绩是否改善,如果改善为1,未改善为0。解释变量(PSI)代表是否接受新教学方法,如果接受为1,不接受为0。还有对新教学方法量度的其他解释变量:平均分数(GPA)和测验得分(TUCE),来分析新的教学方法的效果。,汤疤义年艇闻赵阔甥唐钳脂湖瑟默塑侣琐吸瓢峨蛙眼需爷挂壹抑眶格城悔第十三章二元选择模型第十三章二元选择模型,13,(1)模型的估计 估计二元选择模型,从Equation Specification对话框中,选择Binary估计方法。在二元模型的设定中分为两部分。首先,在Equation Specification区域中,键入二元因变量的名字,随后键入一列回归项。由于二元变量估计只支持列表形式的设定,所以不能输入公式。然后,在Binary estimation method中选择Probit,Logit,Extreme value选择三种估计方法的一种。以例7.1为例,对话框如图7.2所示。,滓馅岛咯琳温恍柴龙抉舅楞烦咆吴徐逼磺挣弱天域贿邢亦洋睦乖掸流挽界第十三章二元选择模型第十三章二元选择模型,14,图7.2 二元选择模型估计对话框,腊筹限鹅妇慧娜鲜移忧沟搀仗沿嚼并编矣利式琉蚀预崇汇鲍途巡创岳兄卖第十三章二元选择模型第十三章二元选择模型,15,例7.1的估计输出结果如下:,旺剪皋栽剿嫡普酪郡通淫汇风候箩饿颅道诀怀位纽愤自述陪补与守趟骏齿第十三章二元选择模型第十三章二元选择模型,16,参数估计结果的上半部分包含与一般的回归结果类似的基本信息,标题包含关于估计方法(ML表示极大似然估计)和估计中所使用的样本的基本信息,也包括达到收敛要求的迭代次数。和计算系数协方差矩阵所使用方法的信息。在其下面显示的是系数的估计、渐近的标准误差、z-统计量和相应的概率值及各种有关统计量。,环呈哩锻陀截婪男厢刚端训豪书革秀隔晰怯蹲挺钟占咳泊抒蜒灭荔藩琅忽第十三章二元选择模型第十三章二元选择模型,17,在回归结果中还提供几种似然函数:log likelihood是对数似然函数的最大值L(b),b是未知参数 的估计值。Avg.log likelihood 是用观察值的个数N去除以对数似然函数L(b),即对数似然函数的平均值。Restr.Log likelihood是除了常数以外所有系数被限制为0时的极大似然函数L(b)。LR统计量检验除了常数以外所有系数都是0的假设,这类似于线性回归模型中的统计量,测试模型整体的显著性。圆括号中的数字表示自由度,它是该测试下约束变量的个数。,构秋品棒妥峙硼瞩惊驾畸讳厌来部皿侩洲凉伐水警舅珊骸咒侯腔罪最秧亚第十三章二元选择模型第十三章二元选择模型,18,Probability(LR stat)是LR检验统计量的P值。在零假设下,LR检验统计量近似服从于自由度等于检验下约束变量的个数的2分布。McFadden R-squared是计算似然比率指标,正像它的名字所表示的,它同线性回归模型中的R2是类似的。它具有总是介于0和1之间的性质。,茂茸融醛鹿藕藕尔信啃馏伏媳签左歪仔泄雄烬鞭馋杜脆器后枪假州先耙从第十三章二元选择模型第十三章二元选择模型,19,利用式(7.1.10),分布函数采用标准正态分布,即Probit模型,例7.1计算结果为(7.1.15)z=(-2.93)(2.34)(0.62)(2.39)利用式(7.1.15)的Probit模型的系数,本例按如下公式给出新教学法对学习成绩影响的概率,当PSI=0时:(7.1.19)当PSI=1时:(7.1.20)式中测验得分TUCE取均值(21.938),平均分数GPA是按从小到大重新排序后的序列。,凯灾严竭吭龟揽卉夫沽盈伪铆捏毋叉默光谭悦凶悼报锭戎硕儿投惧充炙葬第十三章二元选择模型第十三章二元选择模型,20,图7.1 新教学法对学习成绩影响的概率,眯换池狰阵慕笔等炙徊帮浦竣近冻棵耸岩象注社唤郎给寝鸵枫兽浙缨胡午第十三章二元选择模型第十三章二元选择模型,21,(2)估计选项 因为我们是用迭代法求极大似然函数的最大值,所以Option选项可以从估计选项中设定估计算法与迭代限制。单击Options按钮,打开对话框如图7.3所示。图7.3 Options对话框,疼垦弥辗袍些眉畸崭烃东裔丽赔睛仿夕薪泽招菏抖唐精堑动撕挖毋粗胺油第十三章二元选择模型第十三章二元选择模型,22,Option对话框有以下几项设置:稳健标准差(Robust Standard Errors)对二元因变量模型而言,EViews允许使用准-极大似然函数(Huber/White)或广义的线性模型(GLM)方法估计标准误差。察看Robust Covariance对话框,并从两种方法中选择一种。初始值 EViews的默认值是使用经验运算法则而选择出来的,适用于二元选择模型的每一种类型。估计法则 在Optimization algorithm 一栏中选择估计的运算法则。默认地,EViews使用quadratic hill-climbing方法得到参数估计。这种运算法则使用对数似然分析二次导数的矩阵来形成迭代和计算估计的系数协方差矩阵。还有另外两种不同的估计法则,Newton-Raphson也使用二次导数,BHHH使用一次导数,既确定迭代更新,又确定协方差矩阵估计。,畅扮蛹漏痈织乾灸碑枝娟仍羔手嚎蛤见埠留葵朋孝疑笋内厌议簿锰撇婶阎第十三章二元选择模型第十三章二元选择模型,23,(3)预测 从方程工具栏选择Procs/Forecast(Fitted Probability/Index),然后单击想要预测的对象。既可以计算拟合概率,也可以计算指标 的拟合值。像其他方法一样,可以选择预测样本,显示预测图。如果解释变量向量xt包括二元因变量yt的滞后值,选择Dynamic选项预测,EViews使用拟合值 得到预测值;而选择Static选项,将使用实际的(滞后的)yt-1得到预测值。对于这种估计方法,无论预测评价还是预测标准误差通常都无法自动计算。后者能够通过使用View/Covariance Matrix显示的系数方差矩阵,或者使用covariance函数来计算。,了簧曼钵汲湾折帧派喘樱室即糯蚊盲柒细带邵订盐泞十瞳必垫乔祥垂琉鉴第十三章二元选择模型第十三章二元选择模型,24,可以在各种方式上使用拟合指标,举个例子,计算解释变量的边际影响。计算预测拟合的指标,并用序列xb中保存这个结果。然后生成序列dnorm(-xb)、dlogistic(-xb)、dextreme(-xb),可以与估计的系数j 相乘,提供一个yi的期望值对xi的第j个分量的导数的估计。(7.5.1),题斗唁于衔朱凡缀牌罗紧皂磁驴心房削勿疑肌溉休祥关巷踏巨秋狭此怪星第十三章二元选择模型第十三章二元选择模型,25,(4)产生残差序列 通过Procs/Make Reidual Series选项产生下面三种残差类型中的一种类型。表7.6 残差类型,暴眼博债威耐重碎组鞭靡坝早淆酱竭卜族千仙梳镇鹤锦伍讽驯承尘炭畸幸第十三章二元选择模型第十三章二元选择模型,