坐标系中的对称.ppt
13.2 画轴对称图形,第十三章 轴对称,第2课时 用坐标表示轴对称,1.探究在平面直角坐标系中关于x轴和y轴对称点的坐标特点.(重点)2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形.(重点)3.能根据坐标系中轴对称点的坐标特点解决简单的问题.(难点),回顾旧知,1.轴对称中对称轴有什么性质?2.怎样画出关于一条直线的对称图形?,对称轴是对称点所连线段的垂直平分线,也就是把对称点所连线段垂直平分。,1)过每个图形的顶点做垂直并延长。2)等长截取到对称点。3)连接对称点。4)下结论。,探究1:如图,在平面直角坐标系中你能画出点A关于x轴的对称点吗?,A(2,3),A(2,-3),做一做:在平面直角坐标系中画出下列各点关于x轴的对称点.,C(3,-4),C(3,4),B(-4,2),B(-4,-2),(x,y),关于 x 轴对称,(,),x,-y,知识归纳,关于x轴对称的点的坐标的特点是:,横坐标不变,纵坐标互为相反数.,(简称:x称y反),练一练:1.点P(-5,6)与点Q关于x轴对称,则点Q的坐标为_.2.点M(a,-5)与点N(-2,b)关于x轴对称,则a=_,b=_.,(-5,-6),-2,5,探究2:如图,在平面直角坐标系中你能画出点A关于y轴的对称点吗?,A(2,3),A(-2,3),做一做:在平面直角坐标系中画出下列各点关于y轴的对称点.,C(3,-4),C(3,4),B(-4,2),B(-4,-2),(x,y),关于 y轴对称,(,),-x,y,知识归纳,关于y轴对称的点的坐标的特点是:,横坐标互为相反数,纵坐标相等.,(简称:y称x反),练一练:1.点P(-5,6)与点Q关于y轴对称,则点Q的坐标为_.2.点M(a,-5)与点N(-2,b)关于y轴对称,则a=_,b=_.,(5,6),2,-5,例1 如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.,O,对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.,知识要点,在坐标系中作已知图形的对称图形,(一找二描三连),平面直角坐标系中,ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若ABC与ABC关于x轴对称,画出ABC,并写出A、B、C的坐标.,针对训练:,A(0,4),B(2,4),C(3,-1),A(0,-4),B(2,-4),C(3,1),解:如图所示:,例2 已知点A(2ab,5a),B(2b1,ab)(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4ab)2016的值,解:(1)点A、B关于x轴对称,2ab2b1,5aab0,解得a8,b5;(2)A、B关于y轴对称,2ab2b10,5aab,解得a1,b3,(4ab)20161.,例3 已知点P(a1,2a1)关于x轴的对称点在第一象限,求a的取值范围,解:依题意得P点在第四象限,,解得,即a的取值范围是,方法总结:解决此类题,一般先写出对称点的坐标或判断已知所在的象限,再由各象限内点的坐标的符号,列不等式(组)求解,当堂练习,1.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于()Ay轴对称 Bx轴对称 C原点对称 D直线y=x对称,2.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A(-4,-2)B(2,2)C(-2,2)D(2,-2),D,B,3.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点M关于y轴的对称点的坐标是()A(2,3)B(-2,3)C(-3,2)D(-3,-2),A,4.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A(1,2)B(2,2)C(3,2)D(4,2),C,5.已知点P(2a+b,-3a)与点P(8,b+2).若点P与点P关于x轴对称,则a=_,b=_.若点P与点P关于y轴对称,则a=_,b=_.,2,4,6,-20,6.若|a-2|+(b-5)2=0,则点P(a,b)关于x轴对称的点的坐标为_.,(2,-5),7.已知ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出ABC关于y轴对称的图形.,解:点A(-3,5),B(-4,1),C(-1,3),关于y轴的对称点分别为A(3,5),B(4,1),C(1,3).依次连接AB,BC,CA,就得到ABC关于y轴对称的ABC.,x,y,8.已知点A(2a+b,-4),B(3,a-2b)关于x轴对称,求点C(a,b)在第几象限?,解:点A(2a+b,-4),B(3,a-2b)关于x轴对称,2a+b=3,a-2b=4,解得a=2,b=-1点C(2,-1)在第四象限,拓展提升,9.在平面直角坐标系中,规定把一个正方形先沿着x轴翻折,再向右平移2个单位称为1次变换如图,已知正方形ABCD的顶点A、B的坐标分别是(-1,-1)、(-3,-1),把正方形ABCD经过连续7次这样的变换得到正方形ABCD,求B的对应点B的坐标.,解:正方形ABCD,点A、B的坐标分别是(-1,-1)、(-3,-1),根据题意,得第1次变换后的点B的对应点的坐标为(-3+2,1),即(-1,1),第2次变换后的点B的对应点的坐标为(-1+2,-1),即(1,-1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n-3,1),当n为偶数时为(2n-3,-1),把正方形ABCD经过连续7次这样的变换得到正方形ABCD,则点B的对应点B的坐标是(11,1),课堂小结,用坐标表示轴对称,关于坐标轴对称的点的坐标特征,在坐标系中作已知图形的对称图形,关于x轴对称,横同纵反;关于y轴对称,横反纵同,关键要明确点关于x轴、y轴对称点的坐标变化规律,然后正确描出对称点的位置,