欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    函数的极限(左右极限).ppt

    • 资源ID:5243135       资源大小:256KB        全文页数:16页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的极限(左右极限).ppt

    函数的极限(2),一 复习引入,提出问题,回忆当x、x、x时的函数极限是如何定义的我们可否用类似的思想和方法研究xx0时的函数极限,定义1:一般地,当自变量x取正值并无限增大时,函数f(x)的值无限趋近于一个常数a,就说当x趋向于正无穷大时,函数f(x)的极限是a.,记作:,记作:,定义(2):一般地,当自变量x取负值并且绝对值无限增大时,函数f(x)的值无限趋近于一个常数a,就说当x趋向于负无穷大时,函数f(x)的极限是a,那么就说 当x趋向于无穷大时,函数f(x)的极限是a,记作:,如果,且,定义(3),对于常数函数f(x)=c(xR),也有,1考察函数y=x2,当x无限趋近于2时,函数的变化趋势,(1)图象,二 考察函数,比较特征,(2)列表,从表格上看:表1说明,自变量x2趋近于2(x2-)时,y4,表2说明,自变量x2趋近于2(x2+)时,y4,从图象上看:自变量x从左侧趋近于2(即x2-)和从右侧趋近于2(即x2+)时,y都趋近于4,从差式|y4|看:差式的值变得任意小(无限接近于0),从任何一方面看,当x无限趋近于2时,函数yx2的 极限是4记作:,强调:x2,包括分别从左、右两侧趋近于2,即:“x2”是指以任何方式无限趋近于2,(分别从左、右两侧或左、右两侧交替地无限趋近于2),2.考察函数(x1),当x无限趋近于1(但不等于1)时,函数的变化趋势,(1)图象 y=x+1(xR,x1),(2)结论:自变量x从x轴上点x=1的左右两边无限趋近于1,函数 的值无限趋近于2.,强调:虽然在x1处没有定义,但仍有极限,3考察函数,当x无限趋近于0时,函数的变化趋势?,(2)结论:x从0的左边无限趋近于0时,y值无限趋近于-1 x从0的右边无限趋近于0时,y值无限趋近于1,(1)图象,此例与上两例不同,x从原点某一侧无限趋近于0,f(x)也会无限趋近于一个确定的常数但从不同一侧趋近于0,f(x)趋近的值不同,这时f(x)在x0处无极限,(1)请思考下面问题:当xx0时,yf(x)在xx0处有定义,是不是一定有极限?yf(x)在xx0处无定义,是不是一定没有极限?,xx0包括两层意思:x从x0的左侧趋近于x0,即xx0-;x从x0的右侧趋近于x0,即xx0+是不是xx0-和xx0+时,f(x)会趋近于同一个常数?,(2)归纳结果,得到:,三 整理提炼,明确概念,函数在一点处的极限与左、右极限的定义,函数在一点处的极限与左、右极限,1当自变量x无限趋近于常数x0(但x不等于x0)时,如果函数f(x)无限趋近于一个常数a,就说当x趋近于x0时,函数f(x)的极限是a,记作 或当xx0时f(x)a。,2当x从点x0左侧(即xx0)无限趋近于x0时,函数f(x)无限趋近于一个常数a,就说a是函数f(x)在点x0处的左极限,记作。,3如果当x从点x0右侧(即xx0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作。,4常数函数f(x)=c在点x=x0处的极限有.,x无限趋近于常数x0,是指x从x0的左、右两侧无限地趋近于x0。,注意:(1)中x无限趋近于x0,但不包含x=x0即xx0,所以函数f(x)的极限是a仅与函数f(x)在点x0附近的函数值的变化有关,而与函数f(x)在点x0的值无关(x0可以不属于f(x)的定义域),(2)是x从x0的两侧无限趋近于x0,是双侧极限,而、都是x从x0的单侧无限趋近于x0,是单侧极限,显然,例1 当x 时,写出下列函数的极限y=x2 y=sinx y=x y=5,四 例析概念,深化理解,设C为常数,则,例2 写出下列函数当x0时的左右极限,哪些有极限?,(1)函数f(x)在x=x0处的极限,左、右极限,极限与左右极限的关系,学会求一些简单函数的左右极限及极限。,五 比较概念,归纳小结,(2)我们已学过哪7种不同类型的极限?它们的共同之处是什么?用数学符号来表达各有什么不同?,六 课后探究,1.已知,求,2.已知函数,试求(1)f(x)的定义域;(2)求,并指出 是否存在.,

    注意事项

    本文(函数的极限(左右极限).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开