欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    优质课《复数代数形式的四则运算》.ppt

    • 资源ID:5225057       资源大小:437KB        全文页数:25页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    优质课《复数代数形式的四则运算》.ppt

    3.2复数代数形式的四则运算,复平面,复数z=a+bi,复平面内的点Z(a,b),复平面内的向量,x实轴,y虚轴,o,b,a,Z(a,b),(数),(形),一一对应,z=a+bi,一一对应,一一对应,1.复数的模等于向量的模:,2.相等的向量表示同一个复数.,复习回顾:复数的几何意义,1.复数代数形式的加、减、乘、除的运算法则、运算律,以及复数加、减运算的几何意义.(重点)2.复数减法、除法的运算法则.(难点)3.复数代数形式的加、减运算的几何意义.,学习目标:,我们规定,复数的加法法则如下:,设z1=a+bi,z2=c+di 是任意两个复数,那么,(a+bi)+(c+di)=(a+c)+(b+d)i.,即:两个复数相加就是 实部与实部,虚部与虚部分别相加.,说明:(1)当b=0,d=0时与实数加法法则保持一致;(2)两个复数的和仍然是一个复数.,(结合律),对任意z1,z2,z3 C,有 z1+z2=z2+z1(交换律)(z1+z2)+z3=z1+(z2+z3),x,o,y,Z1(a,b),Z2(c,d),Z(a+c,b+d),符合向量加法的平行四边形法则.,3.复数加法运算的几何意义,z2=c+di,z1=a+bi,z=(a+c)+(b+d)i,z1=a+bi,z2=c+di,探究一:复数加法的几何意义,1.代数式:z1=a+bi,z2=c+di,且z1+z=z2,求复数z,z=x+yi,,z1+z=z2,(a+x)+(b+y)i=c+di,设,(c+di)-(a+bi)=(c-a)+(d-b)i,所以z=(c-a)+(d-b)i,探究二:如何理解复数的减法?,2.复数的减法,x,o,y,Z1(a,b),Z2(c,d),符合向量减法的三角形法则.,探究三:类比复数加法的几何意义,请指出复数减法的几何意义.,复数z2z1,复平面中点Z1与点Z2间的距离,1.|z1-z2|表示:_.,已知两复数z1=a+bi,z2=c+di(a,b,c,dR),2.|z+(1+2i)|表示:_.,点(-1,-2)的距离,点Z(对应复数z)到,当堂检测:,例1 计算(5-6i)+(-2-i)-(3+4i).,解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4)i=-11i,例题讲解:,课堂检测:,计算:(1)(2+4i)+(3-4i)(2)5-(3+2i)(3)(-3-4i)+(2+i)-(1-5i)(4)(2-i)-(2+3i)+4i,我们规定,复数乘法法则如下:设z1=a+bi,z2=c+di 是任意两个复数,那么它们的乘积为:(a+bi)(c+di)=ac+adi+bci+bdi2=ac+adi+bci-bd=(ac-bd)+(ad+bc)i.即(a+bi)(c+di)=(ac-bd)+(ad+bc)i注意:两个复数的积是一个确定的复数.,对任意z1,z2,z3 C,有 z1z2=z2z1(交换律)(z1z2)z3=z1(z2z3)(结合律)z1(z2+z3)=z1z2+z1z3(分配律),例1 计算(1-2i)(3+4i)(-2+i).,解:(1-2i)(3+4i)(-2+i)=(11-2i)(-2+i)=-20+15i.,分析:类似两个多项式相乘,把i2换成-1,例2 计算:(1)(3+4i)(3-4i);(2)(1+i)2.,解:(1)(3+4i)(3-4i)=32-(4i)2=9-(-16)=25.,(2)(1+i)2=1+2i+i2=1+2i-1=2i.,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.虚部不等于的两个共轭复数也叫做共轭虚数.实数的共轭复数是它本身.,思考:若z1,z2是共轭复数,那么()在复平面内,它们所对应的点有怎样的位置关系?()z1z2是一个怎样的数?,记法:复数z=a+bi 的共轭复数记作,=a-bi,4.共轭复数的定义,解:作图,得出结论:在复平面内,共轭复数z1,z2 所对应的点关于实轴对称.,令z1=a+bi,则z2=a-bi则z1z2=(a+bi)(a-bi)=a2-abi+abi-b2i2=a2+b2结论:任意两个互为共轭复数的乘积是一个实数.,探究四:类比实数的除法是乘法的逆运算,我们规定复数的除法是乘法的逆运算,试探求复数除法的法则.,复数除法的法则是:,方法:在进行复数除法运算时,通常先把,在作根式除法时,分子分母都乘以分母的“有理化因式”,从而使分母“有理化”.这里分子分母都乘以分母的“实数化因式”(共轭复数),从而使分母“实数化”.,先写成分式形式,然后分母实数化,分子分母同时乘以分母的共轭复数,结果化简成代数形式,当堂检测:,计算:(1)(7-6i)(-3i)(2)(3+4i)(-2-3i),(3),(4),高考演练:,归纳总结:,通过本节课的学习,你有什么收获?请从知识、技能、数学思想方法、解决问题的经验等方面谈谈你的感想.,布置作业:,P112 习题1,4,5,

    注意事项

    本文(优质课《复数代数形式的四则运算》.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开