人教A版选修2-2数学《合情推理》PPT.ppt
第二章 推理与证明,内容结构“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式推理一般包括合情推理和演绎推理在本章中,我们将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。,2.1 合情推理与演绎推理,本节知识结构,2.1.1 合情推理,归纳推理,歌德巴赫猜想的提出过程:,3710,31720,131730,1037,20317,301317,偶数奇质数奇质数,63+3,,一个偶数(不小于6)总可以表示成两个 奇质数之和;,没有发现反例。,83+5,105+5,125+7,147+7,165+11,1 00029+971,,归纳推理的定义:,由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).,简言之,归纳推理是由部分到整体、由个别到一般的推理。,例如:金受热后体积膨胀,银受热后体积膨胀,铜受热后体积膨胀,铁受热后体积膨胀,金、银、铜、铁是金属的部分小类对象,它们受热后分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致体积膨胀 所以,所有的金属受热后都体积膨胀。,例如:磨擦双手(S1)能产生热(P),敲击石头(S2)能产生热(P),锤击铁块(S3)能产生热(P),磨擦双手、敲击石头、锤击铁块都是物质运动;所以,物质运动能产生热。,例:观察下图,可以发现,1+3+(2n1)=n2,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,,归纳推理的一般步骤:,检验猜想。,提出带有规律性的结论,即猜想;,对有限的资料进行观察、分析、归纳整理;,类比推理,“火星上是否有生命”,由两类对象具有某些类似特征,和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比),类比推理的定义:,简言之,类比推理是由特殊到特殊的推理,发明行星三大运动定律的开普勒曾说类比推理是自然奧妙的参与者和自己最好的老师,数学家波利亚曾指出“类比是一个伟大的引路人,求解立体几何往往有赖于平面几何的类比问题.”,类比推理的一般步骤:,找出两类对象之间可以确切表述的相似特征;,用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;,检验猜想。,类比推理举例,例3 类比平面内直角三角形的勾股定理,试 给出空间 中四面体性质的猜想,例3 类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想,合情推理,归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理。,通俗地说,合情推理是指“合乎情理”的推理。,合情推理的应用,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论。,证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向,小 结,前面学习了归纳推理和类比推理这两种合情推理,归纳推理是由特殊到一般的推理;类比推理是由特殊到特殊的推理,