人大微积分课件12-4一阶线性微分方程.ppt
,第四节一阶线性微分方程,一、线性方程,二、贝努利方程,三、小结,一阶线性微分方程的标准形式:,方程称为齐次方程.,一、线性方程,非线性的.,齐次方程的通解为,一阶线性微分方程的解法,把齐次方程通解中的常数变易为待定函数的方法.,实质:未知函数的变量代换.,设,积分得,一阶线性非齐次微分方程的通解为:,对应齐次方程通解,非齐次方程特解,解,例1,例2,解,例3 如图所示,平行与 轴的动直线被曲 线 与 截下的线段PQ之长数值上等于阴影部分的面积,求曲线.,两边求导得,解,解此微分方程,所求曲线为,贝努利方程的标准形式,方程为非线性微分方程.,方程为线性微分方程.,解法:需经过变量代换化为线性微分方程.,二、贝努利方程,求出通解后,将 代入即得,代入上式,解,例 4,例5 用适当的变量代换解下列微分方程:,解,所求通解为,1、,解,分离变量法得,所求通解为,2、,解,代入原式,分离变量法得,所求通解为,另解,3、,1.齐次方程,2.线性非齐次方程,3.伯努利方程,三、小结,思考题,求微分方程 的通解.,思考题解答,练 习 题,练习题答案,