欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    义务教育数学新“课标”的理念、内容及案例解读.ppt

    • 资源ID:5180640       资源大小:2.02MB        全文页数:184页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    义务教育数学新“课标”的理念、内容及案例解读.ppt

    义务教育数学新“课标”的理念、内容及案例解读,1,2,2012年,进入课程改革的一个新时期,2011年12月28日,教育部颁布了义务教育数学课程标准(2011年版)在内的19种课程标准。为落实课程标准,教育部强调:组织开展 全员学习和培训,全面理解、准确把握修订后课程标准的精神实质和主要变化。根据修订后印发的各学科课程标准,组织教科书的修订和审查工作。今年秋季将在所有起始年级使用新教材。其他年级也要依据新课程标准组织教学,改进评价方法。加强组织领导,统筹规划,全面部署新课程标准的学习、宣传、培训和教研工作,确保新课程标准的全面落实。(教基二司20119号文,2011年12月28日 中国教育报 2012年2月8日 CCTV 1 新闻直通车 2月12日),3,媒体的报道,4,课程标准是国家的法定文件,应该特别重视。我国基础教育现在实行“一标多本”的教材建设和选用制度,“课标”的地位和重要性远远高于各出版社出版的教材。希望教师养成经常研读“课标”的习惯。教师备课,应该避免“重教材,轻课标”的情况;看课程标准,应该避免“重内容部分,轻理念部分”的情况。教任何一个年级的教师,都应该尽量了解教学全局,包括数学课程的教学全局,也包括语文、科学等课程的相关情况。教材,由于编写和审定需要时间,一本一本地逐年出版,教师难以胸有全局,其实弊病很大。课程标准对于教学内容,是按照学段表述的,不是按照年级表述的。天津市和平区的小学教研,从2011年10月开始布置“教师说课标”活动,一直延续至2012年6月,是很好的措施。,5,报告的提纲,一、新“课标”在理念和内容上的变化二、数学基础教育的“双基”如何发展为“四基”三、“数学思想”的教学举例(小学、初中)四、小学、初中数学若干节课举例(听课、评课)五、教学建议,6,一、新“课标”在理念和内容上的变化,7,义务教育数学课程标准(2011年版)的解读,该课标是在2000年颁布的课标(实验稿)基础上修订而成。修订工作从2005年5月16日启动,2007年完成初稿后多方征求意见,多次修改;2010年底上报教育部,2011年4月教育部组织会议审议,再经教育部 党组讨论通过,部长签发。该新课标已于2011年12月28日由教育部颁布,北师大出版社出版。新课标的解读,也已经由北师大出版社出版。,8,9,新“课标”在理念上的变化,理念上的变化,数学是研究数量关系和空间形式的科学。(原:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。),10,理念上的变化,人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。知识技能、数学思考、问题解决、情感态度四个方面的课程目标的整体实现,是学生受到良好数学教育的标志。(原:人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展。),11,理念上的变化,10个数学课程与教学中应当注重发展的核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识。(原:数感、符号感、空间观念、统计观念、应用意识、推理能力。),12,理念上的变化,明确提出“四基”(此处略,因为后面将专题解读),13,理念上的变化,明确提出“发现问题、提出问题”能力的培养。分析问题和解决问题固然重要,而发现问题和提出问题更是培养学生创新意识所需要的。(发现问题,不仅包括发现浅层次的问题,更加需要的是发现较深层次问题的能力。),14,15,新“课标”在内容上的变化,课程内容结构上的变化,义务教育阶段数学课程内容分为“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面,每一部分内部的结构和具体内容做了适当调整。(原:“数与代数”,“空间与图形”,“统计与概率”和“实践与综合应用”),16,课程内容结构上的变化,“数与代数”部分在内容结构上没有变化,第一学段是“数的认识、数的运算、常见的量、探索规律”;第二学段是“数的认识、数的运算、式与方程、正比例和反比例、探索规律”。“图形与几何”部分第一、二学段,内容结构没有变化。第三学段,将原来的四个部分调整为三个部分,即由原来的“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”,修改为三个部分,即“图形的性质”、“图形的变化”、“图形与坐标”。这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。,17,课程内容结构上的变化,“统计与概率”内容结构做了较大调整,使三个学段内容的层次更加明确。强调培养数据分析观念,与学生的现实生活联系得更加紧密。第一学段内容减少,主要是学会分类、会进行简单的数据搜集与整理;第二学段分为“简单数据统计过程”和“随机现象发生的可能性”两部分;第三学段分为“抽样与数据分析”和“事件的概率”两部分。这样调整的原因在于,在实验过程中原来第一学段对于统计与概率内容的要求,按照学生现有的理解水平,学习有一定困难,教学设计与实施有很大难度。同时,在内容上与后面两个学段有很大的重复。调整后使统计与概率内容在三个学段的要求上有明显区分,在难度上也呈现一定的梯度。,18,课程内容结构上的变化,“综合与实践”内容做了较大修改。进一步明确了“综合与实践”的内涵和要求,明确“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。“综合与实践”的教学目标是帮助学生积累数学活动经验,培养学生应用意识和创新意识。,19,第一学段具体内容的修改,第一学段内容总体上修改不大,增删内容大致相当,“数与代数”内容略有增加,“统计与概率”内容有明显的减少。,20,第一学段具体内容的修改,1.统计与概率等内容适当降低难度,内容做了较大修改。进一步明确了“综合与实践”的内涵和要求:第一学段统计与概率领域内容大幅减少,由原来的11条具体要求,减少为现在的3条。全部删除了有关概率内容的“不确定现象”的3条,其中部分内容移到第二学段。实践表明,第一学段学生理解不确定现象有难度,不容易理解事件发生的可能性。这一学段学生主要应学习和掌握确定的量,开始理解和掌握自然数、分数和小数。因此,将不确定现象的描述后移。对于统计内容也降低了难度,平均数、条形统计图等内容也移到第二学段。此外,“能用自选单位估计和测量图形的面积”,“认识千米、公顷,”“能在方格纸上画出简单图形的轴对称图形”,“会看简单的路线图”等,也因为难度的原因,将其删除或移入第二学段。,21,第一学段具体内容的修改,2增加或进一步明确一些具体内容 根据学生学习的需要,以及实验和调研的反馈意见,第一学段增加或调整了一些内容。增加的内容包括:“知道用算盘可以表示多位数”,这一要求考虑中国文化的因素,以及许多专家学者和第一线教师对珠算在小学数学教学作用问题提出的建议;“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。”使学生能较准确把握有关小数的问题,也为后续的学习做准备,但这一学段只要求同分母的分数比较。,22,第一学段具体内容的修改,调整的内容包括:估算的要求改为“能结合具体情境,选择适当的单位进行简单估算,体会估算在生活中的作用”。使估算的要求更加具体、明确。有助于清楚地认识和理解估算的价值与意义。强调了“选择适当的单位进行简单估算”,明确估算的重点一是要有具体的情境,二是在一个确定的情境中,根据实际需要选择适当的单位进行估算。标准(2011年版)的例6做了上述说明。“能口算一位数乘除两位数”从第二学段移到第一学段。在第一学段数的认识和相关运算的基础上,学生完全可以掌握这一内容。原来在第二学段出现,明显滞后。“认识小括号,能进行简单的整数四则混合运算(两步)”在第一学段增加了这一条,与第二学段形成一个连续的、渐进的对于混合运算的要求。在第一学段认识小括号,在第二学段认识中括号。“结合实例认识面积,体会并认识面积单位厘米、分米、米,能进行简单的单位换算”。增加了分米的认识,将千米、公顷的认识移到第二学段,并降低了要求。,23,第二学段具体内容的修改,1.统计与概率等内容适当降低难度第二学段统计与概率内容,删除了众数、中位数内容和“能设计统计活动,检验某些预测;初步体会数据可能产生误导”。还有一些内容在表述方式和具体要求上做了调整。一是强调了在搜集数据中运用适当的方法。“会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据”。学生可以用自己喜欢的方法搜集数据,在教学中应当引导学生用比较科学合理的方法,收集有效的数据。在经历收集整理数据的过程中,逐步使学生了解数据的重要性。二是调整了对可能性的要求。表述为,“1.结合具体情境,了解简单的随机现象;能列出简单的随机现象中所有可能发生的结果。2通过实验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并和同学交流。”提出更为具体的要求。对于可能性,要求“列出简单随机现象中所有可能发生的结果”,与原来的“体验事件发生的等可能性以及游戏规则的公平性,会求一些简单事件发生的可能性;能设计一个方案,符合指定的要求;对简单事件发生的可能性作出预测,并阐述自己的理由。”的要求相比,大大降低了要求。同时使这部分内容更具可操作性,符合小学阶段学生学习的特点。,24,第二学段具体内容的修改,删除“了解两点确定一条直线和两条相交直线确定一个点”。这个内容对于小学生来说较为抽象,与生活经验的联系也不很紧密,要求学生了解意义不大,而把“了解两点确定一条直线”(及“掌握等式的基本性质”)放在第三学段作为进行演绎证明的基本事实之一。此外,对于小数、分数、百分数,重点强调了理解他们的意义,以及会进行小数、分数和百分数之间的转化。在这个转化的过程中,学生必然需要了解它们之间的关系,所以不再单独要求探索小数、分数和百分数之间的关系。,25,第二学段具体内容的修改,2、增加了部分内容增加“在具体情境中,了解常见的数量关系:总价=单价数量、路程=速度时间,并能解决简单的实际问题”。学生对一些常见数量关系的了解,特别是运用这些数量关系解决问题,是小学阶段问题解决的核心。而“总价=单价数量、路程=速度时间”是小学阶段最常用的数量关系,绝大多数实际问题都可以归结为这两类数量关系。标准中增加这一要求,为小学数学课程与教学中的问题解决提供了一个重要基础。增加“结合简单的实际情境,了解等量关系,并能用字母表示”。了解数量关系是学习字母表示数的重点目的。使学生在实际情境中了解数量关系。也为学习简易方程做准备。增加“了解圆的周长与直径的比为定值”,强调学生在探索周长与直径比的过程中认识圆周率。,26,第三学段具体内容的修改,第三学段内容的调整主要是从学生发展的角度出发,重点考虑与前面学段的知识内容的衔接;与学生的生活经验和未来的生活实践的联系;学生对知识内容的接受能力和水平;对学科本质以及核心概念的体现。,27,第三学段具体内容的修改,1.删减的主要内容 在“数与代数”、“图形与几何”、“统计与概率”等部分中,删除了一些内容,主要有:能对含有较大数量的信息作出合理的解释与推断;了解有效数字的概念;能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题;与梯形有关的内容:探索并了解圆与圆的位置关系;关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等;关于镜面对称的要求;极差、频数折线图等内容,28,第三学段具体内容的修改,对于删减的内容,理由如下:像“能对含有较大数量的信息作出合理的解释与推断”等内容已经在第一、二学段学习,而“了解有效数字的概念”这样的内容及要求,有些脱离初中学生的经验和生活需要。“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”,学生学习有一定的困难,放到高中学习更为合适。对于梯形以及等腰梯形这样的传统内容,在第二学段已了解了它们的概念及其基本性质,对这些图形的进一步认识则完全可以通过转化为三角形和平行四边形等来完成。,29,第三学段具体内容的修改,2.适当增加的内容最简二次根式和最简分式的概念;能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;会比较线段的大小,理解线段的和、差,以及线段中点的意义;了解平行于同一条直线的两条直线平行;会按照边长的关系和角的大小对三角形进行分类;了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系;尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形能用计算器处理较为复杂的数据;理解平均数的意义,能计算中位数、众数;掌握等式的基本性质。,30,第三学段具体内容的修改,增加这些内容的理由如下主要是对原实验稿中相关内容的补充,或者是对原有要求的进一步明确,例如,“能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。”,“会比较线段的大小,理解线段的和、差,以及线段中点的意义”,“了解平行于同一条直线的两条直线平行”,“会按照边长的关系和角的大小对三角形进行分类”等等,这些内容有助于学生很好地把握初中的知识,对今后的学习也有很大的基础性作用。有的内容则是从前面的学段移到第三学段的,如,“理解平均数的意义,能计算中位数、众数”、“掌握等式的基本性质”等。,31,第三学段具体内容的修改,以“*”标注的选学内容主要有:*能解简单的三元一次方程组*知道给定不共线三点的坐标可以确定一个二次函数(有误?)*了解一元二次方程的根与系数的关系*了解平行线性质定理的证明*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等,32,第三学段具体内容的修改,增加这些选学内容的理由增加的选学内容中与图形的证明有关的较多。增加这些初等几何中基本的也是很重要的命题的证明作为选学内容,目的是希望给一些有能力并喜欢几何证明的学生更多的机会学习和掌握证明的方法、体会证明的意义以及命题间的逻辑关联等,体现“不同的人在数学上得到不同的发展”。另外还有一部分是涉及到作为证明基础的“基本事实”(即通常称为“公理”)的命题部分的增加或变化。,33,第三学段具体内容的修改,3.在要求上有变化的内容“标准”中还有一些是在知识内容的具体要求程度上的变化或要求的精细化,如原来要求的是“了解”,现在则是“理解”,等等。有“理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算”;“探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质”;“在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系”、“在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系”等。,34,二、数学基础教育的“双基”如何发展为“四基”,35,数学基础教育中的“双基”如何发展为“四基”,36,数学基础教育中的“双基”如何发展为“四基”,37,数学基础教育中的“双基”如何发展为“四基”(顾沛,数学教育学报2012年第1期),一、“双基”为什么要发展为“四基”二、关于数学的“基本思想”三、关于数学的“基本活动经验”四、“四基”是一个有机的整体,38,一、“双基”为什么要发展为“四基”,“双基”发展为“四基”,在课标中的表述为:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”“知识与技能”、“过程与方法”、“情感态度与价值观”三维目标结合数学学科的特点的具体化。,39,“双基”的历史贡献应该肯定。但是,对于“双基”的内容,即对于什么是学生应该掌握的“基础知识”和“基本技能”,在“知识爆炸”的时代,在现代信息技术突飞猛进的时代,在获取知识、技能的渠道大大增加的时代,应该与时俱进。过去提到数学的“双基”时,通常是指:数学的基本概念、基本公式、基本运算、基本性质、基本法则、基本程式、基本定理、基本作图、基本推理、基本语言、基本方法、基本操作、基本技巧,等等。,40,许多年来,“双基”概念一直在发展中深化。至2000年,中华人民共和国教育部制定的九年义务教育全日制初级中学数学教学大纲(试验修订版)中的表述,数学“基础知识是指:数学中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。基本技能是指:能够按照一定的程序与步骤进行运算、作图或画图、进行简单的推理。”并且,“双基”在此已经是与思维能力、运算能力、空间观念等相互联系表述的。在“知识爆炸”的时代,对于过去数学“双基”的某些内容,如繁杂的计算、细枝末节的证明技巧等,需要有所删减;而对于估算、算法、数感、符号意识、收集和处理数据、概率初步、统计初步、数学建模初步等,又要有所增加。这就是数学“双基”内容的与时俱进。,41,为什么有了“双基”还不够,现在还要增加两条,成为“四基”?第一,因为“双基”仅仅涉及上述三维目标中的一个目标“知识与技能”。新增加的两条则还涉及三维目标的另外两个目标“过程与方法”和“情感态度与价值观”。第二,因为某些教师有时片面地理解“双基”,往往在实施中“以本为本”,见物不见人,而教育必须以人为本,新增加的“数学思想”和“活动经验”就直接与人相关,也符合“素质教育”的理念。第三,因为仅有“双基”还难以培养创新性人才,“双基”只是培养创新性人才的一个基础,但创新性人才不能仅靠熟练掌握已有的知识和技能来培养,获得数学思想和数学活动经验等也十分重要,这就是新增加的两条。,42,二、关于数学的“基本思想”,数学课程固然应该教会学生许多必要的结论,但绝不仅仅以教会这些定理、公式和计算程序、解题方法为目标,更重要的是让学生在学习这些结论的过程中获得数学思想。数学思想是数学科学发生、发展的根本,也是数学课程教学的精髓。但是,课标在这里并没有展开阐述“数学的基本思想”,这就给我们留下了讨论的空间。而且由于它过去并没有被充分地讨论过,所以可能仁者见仁,智者见智,不同的学者可能会有不完全一样的说法。我这里也谈谈自己不成熟的观点,与大家交流。,43,数学思想的内涵和外延都很丰富,通俗地说,例如有从数学角度看问题的出发点,把客观事物简化和量化的思想,周到、严密、系统地思考问题,以及建立数学模型的思想,合理地运筹帷幄,等等。一个人进入社会后,如果不是在与数学相关的领域工作,他学过的数学定理和公式可能大多都用不到,而在学习数学知识的过程中获得的这些数学思想却一定会使他终生受益;虽然有些人对此是有意识的,有些人是无意识的。“课标”在这里的措词为数学的“基本思想”,而不是数学的“基本思想方法”,我以为,这是明智的、恰当的,因为“思想方法”可能更多地让人联想到具体的“方法”,如换元法、代入法、配方法,层次就降低了,且冲淡了“思想”这个关键词。并且,其实双基中已经含有数学的这些具体方法。,44,数学的基本思想,主要可以有数学抽象的思想、数学推理的思想、数学模型的思想、数学审美的思想。人类通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科及其众多的分支;通过数学推理,进一步得到大量结论,数学科学得以丰富和发展;通过数学模型,把数学应用到客观世界中,产生了巨大的社会效益,又反过来促进了数学科学的发展;通过数学审美,看到数学“透过现象看本质”、“和谐统一众多事物”中美的成份,感受到数学“以简驭繁”、“天衣无缝”给我们带来的愉悦,并且从“美”的角度发现和创造新的数学。,45,当然,由上述数学的“基本思想”演变、派生、发展出来的数学思想还有很多。例如由“数学抽象的思想”派生出来的可以有:分类的思想,集合的思想,“变中有不变”的思想,符号表示的思想,对应的思想,有限与无限的思想,等等。例如由“数学推理的思想”派生出来的可以有:归纳的思想,演绎的思想,公理化思想,数形结合的思想,转换化归的思想,联想类比的思想,逐步逼近的思想,运筹的思想,算法的思想,代换的思想,特殊与一般的思想,等等。例如由“数学建模的思想”派生出来的可以有:简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,统计的思想,等等。例如由“数学审美的思想”派生出来的可以有:简洁的思想,对称的思想,统一的思想,和谐的思想,以简驭繁的思想,“透过现象看本质”的思想,等等。,46,举例说,“分类的思想”和“集合的思想”可以是这样由“数学抽象的思想”派生出来的:人们对客观世界进行观察时,常常从研究需要的某个角度分析联想,排除那些次要的、非本质的因素,保留那些主要的、本质的因素,一种有效的做法就是对事物按照其某种本质进行分类,分类的结果就产生了“集合”。把它们上升到思想的层面上,就形成了“分类的思想”和“集合的思想”。,47,在用数学思想解决具体问题时,对某一类问题反复推敲,会逐渐形成某一类程序化的操作,就构成了“数学方法”。数学方法也是具有层次的。处于较高层次的,例如有:逻辑推理的方法,合情推理的方法,变量替换的方法,等价变形的方法,分情况讨论的方法,等等。低一些层次的数学方法,还有很多。例如有:分析法,综合法,穷举法,反证法,抽样法,构造法,待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,坐标法,配方法,列表法,图像法,等等。,48,数学方法不同于数学思想“数学思想”往往是观念的、全面的、普遍的、深刻的、一般的、内在的、概括的;而“数学方法”往往是操作的、局部的、特殊的、表象的、具体的、程序的、技巧的。数学思想常常通过数学方法去体现;数学方法又常常反映了某种数学思想。数学思想是数学教学的核心和精髓,教师在讲授数学方法时应该努力反映和体现数学思想,让学生体会和领悟数学思想,提高学生的数学素养。,49,三、关于数学的“基本活动经验”,数学教学,本质上是师生共同进行数学活动的教学,所以学生获得相关的活动经验当然应该是数学课程的一个目标。特别是,其中有些精神“只能意会,难以言传”,必须要学生自己在亲身经历的过程中获得经验;有些内容虽能言传,但是如果没有学生在数学活动中亲身体会,理解也难以深刻。但是,课标并没有展开阐述“数学的基本活动经验”,这也给我们留下了讨论的空间。我在这里也谈谈自己不成熟的观点,与大家交流。,50,什么是数学活动经验?我以为,“活动经验”与“活动”密不可分,所说的“活动”,当然要有“动”,手动、口动和脑动。它们既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的数学活动,也包括数学课程教学中特意设计的活动。“活动”是一个过程,因此也体现出,不但学习结果是课程目标,而且学习过程也是课程目标。,51,其次,“活动经验”还与“经验”密不可分,当然就与“人”密不可分。学生本人要把在活动中的经历、体会总结上升为“经验”。这既可以是活动当时的经验,也可以是延时反思的经验;既可以是学生自己摸索出的经验,也可以是受别人启发得出的经验;既可以是从一次活动中得到的经验,也可以是从多次活动中互相比较得到的经验。特别关键的是,这些“经验”必须转化和建构为属于学生本人的东西,才可以认为学生获得了“活动经验”。应该注意的是,所说的“活动”都必须有明确的数学内涵和数学目的,体现数学的本质,才能称得上是“数学活动”,它们是数学教学的有机组成部分。教师的课堂讲授、学生的课堂学习,是最主要的“数学活动”,这种讲授和学习,应该是渐进式的、启发式的、探究式的、互动式的。此外,还有其他形式的“数学活动”,例如学生的自主学习,调查研究,独立思考,合作交流,小组讨论,探讨分析、参观实践,以及作业练习和操作计算工具,等等。,52,还应该强调的是,学生在进行“数学活动”的过程中,除了能够获得逻辑推理的经验,还能够获得合情推理的经验。例如,根据条件“预测结果”的经验和根据结果“探究成因”的经验。这两种经验对于培养创新人才也是非常重要的。数学活动的教育意义在于,学生主体通过亲身经历数学活动过程,能够获得具有个性特征的感性认识、情感体验、以及数学意识、数学能力和数学素养。,53,让学生获得“数学活动经验”,还能够培养学生在活动中从数学的角度思考问题,直观地、合情地获得一些结果,这些是数学创造的根本,是得到新结果的主要途径。数学活动经验并不仅仅是实践的经验,也不仅仅是解题的经验,更加重要的是思维的经验,是在数学活动中思考的经验。因为,创新依赖的是思考,是数学活动中创造性的思维。而思维方法是依靠长期活动经验积累获得的,思维品质是依靠有效的、多方面的数学活动改善的,并不是仅仅依靠接受教师的传授获得的。爱因斯坦说:“独立思考是创新的基础”。获得数学活动经验,最重要的是积累“发现问题、提出问题”的经验,以及“分析问题、解决问题”的经验,总之,是“从头”想问题、思考问题、做问题全过程的经验。,54,学生形成智慧,不可能仅依靠掌握丰富的知识,一定还需要经历实践及在实践中取得经验。数学思想也不仅在探索推演中形成,还需要在数学活动经验积累的基础上形成。,55,数学的基本活动经验可以按不同的标准分成若干类型。比如,有的学者把它分为如下四种:直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验。直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等。间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟等。设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等。思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等。学生只有积极参与数学课程的教学过程,经过独立思考,经过探索实践,经过合作交流,才有可能积累数学活动经验。,56,课标中还专门设计了“综合与实践”的课程内容,强调以问题为载体,让学生在综合运用知识、技能解决问题的实践中获得数学活动经验。在学生积累和获得数学的基本活动经验的过程中,就必然有情感态度与价值观的提升。这样,“四基”就全面体现了纲要中“三维目标”的要求。,57,四、“四基”是一个有机的整体,“四基”虽然是由四个部分构成的,但“四基”不应仅仅看作是四个事物简单的叠加或混合,而应是一个有机的整体,是互相联系、互相促进的。,58,基础知识和基本技能是数学教学的主要载体,需要花费较多的课堂时间;数学思想则是数学教学的精髓,是统领课堂教学的主线;数学活动是不可或缺的教学形式与过程。“四基”既然比原来增加了两条,教师在课堂教学的安排上就应该有意识地给数学思想的教学预留适当的时间;但是数学思想的教学不能空洞地进行,一定要以数学知识为载体进行,并且应该注意将数学知识与数学思想融为一体,因势利导,水到渠成,画龙点睛;教师在讲解数学思想时,应该避免“两层皮”,避免生硬牵强,避免长篇大论。在课堂数学活动的时间安排上,大量的应该是教师启发式传授和学生在教师指导下独立思考、自主探究的时间;其他形式的数学活动也应安排适当的时间。此外,“四基”既然比原来增加了两条,那么,在教学评价上也应该给数学思想和数学活动以适当的位置和空间。,59,课标在“四基”的表述前用了“获得适应社会生活和进一步发展所必需的”这样一个限制性定语,这样,一方面避免了在“四基”的名义下不适当地扩大教学内容,一方面也强调了学生获得数学“四基”的现实意义和长远意义。其现实意义是学生适应社会生活所必需;其长远意义是学生进一步发展所必需。如果数学课程能够使我们的学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验,那么培养全面发展的创新性人才就具备了很好的条件。,60,三、“数学思想”的教学举例(小学、初中),学习数学思想提高数学素养十分重要,小学、中学和大学,学习内容不同,但 这一点是共同的。,62,小学的案例,课标中若干案例(原序号)该案例体现什么数学思想该案例还体现课标的其他哪些方面,63,第一学段,例1 用算盘上的算珠表示三位数。符号表示的思想,64,例8.估计每分钟脉搏跳动的次数、阅读的字数、跳绳的次数、走路的步数。优化的思想;设计的数学活动;解决问题的多种策略,65,例10 在下面的图1中,描出横排和竖排上两个数相加等于10 的格子,再分别描出相加等于6,9的格子,你能发现什么规律。数形结合的思想;函数的思想;数学审美的思想;情感态度和价值观,66,图1,例18 新年联欢会准备买水果,调查班级同学最喜欢吃的水果,设计购买方案。数据分析的思想;设计的数学活动“统计”无对错,但是要符合最初设定的原则。,67,例19 对全班同学的身高进行调查分析。数据分析的思想;情感态度和价值观 养成保存资料的习惯;在数学活动中体会数学思维和数学精神。,68,在三个学段,标准都举了对全班同学的身高进行分析的例子,并且鼓励学生把每年测量身高的数据都保留下来,根据不同学段的特点对于数据进行整理、描述和分析,提取信息,从而经历数据分析的过程。具体阐述和要求如下。三个学段中对于数据分析过程的例子第一学段(课标例19):对全班同学的身高进行调查分析。说明 学校一般每年都要测量学生的身高,这为学习统计提供了很好的数据资源,因此这个问题可以贯穿第一学段和第二学段,根据不同学段的学生特点,要求可以有所不同。希望学生把每年测量身高的数据都保留下来,养成保存资料的习惯。在第一学段,主要让学生感悟可以从数据中得到一些信息。第二学段(课标例38):对全班同学的身高的数据进行整理和分析。说明 在上面的例子中,已经引导学生对全班同学的身高的数据进行初步分析。在这个学段中,要求学生结合以前积累的身高数据,进行进一步的整理,然后进行分析。整理的目的是为了便于分析,例如,条形统计图有利于直观了解不同高度段的学生数及其差异;扇形统计图有利于直观了解不同高度段的学生占全班学生的比例及其差异;折线统计图有利于直观了解几年来学生身高变化的情况,预测未来身高变化趋势。学生还可以讨论用什么数据来代表全班同学的身高,自己的身高在全班的什么位置。第三学段(课标例70):比较自己班级与别的班级同学的身高状况。,69,例20(扣子)图形分类。分类的思想;集合的思想,70,图6,说明 本活动适合于本学段的各个年级,可以在要求上有所区分。本活动的目的是希望学生能够清楚,分类是要依赖分类标准的,例如扣子的形状、扣子的颜色或者扣眼的数量都可以作为分类的标准,而在不同的分类标准下分类的结果可能是不同的。本活动将有利于培养学生把握图形的特征、抽象出多个图形的共性的能力。另一方面,活动还要求学生运用文字、图画或表格等方法记录对扣子进行分类后的结果,这有利于培养学生整理数据的能力。,71,教师在此活动的教学中可以作如下设计:(1)教师提出问题,引导学生讨论分类标准。可以启发学生这样思考:先关注一个指标作为分类标准,如先关注颜色;在此基础上,再进一步关注两个指标作为分类标准,如进一步关注颜色和形状;最后再关注颜色、形状和扣眼数。这样可以避免出现混乱。(2)根据已经讨论确定的分类标准对学生分组,引导学生实际操作,合作完成计数;各小组呈现统计结果。(3)教师组织学生报告统计结果,引导学生作出评价,帮助学生整理思路。,72,73,(扣子分类问题的延伸),按不同的标准分类,结果不同;兼用两种标准分类;兼用两种标准分类,顺序不同,注意其结果;再兼用两种标准分类,顺序不同,注意其结果;猜测规律 交换率;验证规律 穷举法;规律能否推广 任何两个独立的指标,在“运算”时都满足 交换率?试验推广的规律 按行和列两个独立的指标加方表中的数;找出不独立的两个指标的情况 平面的旋转和平移;灌水和烧水,例22 上学时间。让学生记录自己在一个星期内每天上学途中所需要的时间,并从这些数据中发现有用的信息。数据分析的思想;随机的思想 数据较多时的稳定性;培养学生认真做事的习惯。,74,第二学段,例26 李阿姨去商店购物,带了100元,她买了两袋面,每袋30.4元,又买了一块牛肉,用了19.4元,她还想买一条鱼,大一些的每条25.2元,小一些的每条15.8元。请帮助李阿姨估算一下,她带的钱够不够买小鱼?能不能买大鱼?简化的思想,估算的思想 估算的方法:取合适的单位;适当放大和适当缩小,75,例29 彩带每米售价3.2元,购买2米,3米,10米彩带分别需要多少元?在方格纸上把与数对(长度,价钱)相对应的点描出,并且回答下列问题:(1)所描的点是否在一条直线上?(2)估计一下买1.5米的彩带大约要花多少元?(3)小刚买的彩带长度是小红的3倍,他所花的钱是小红的几倍?数形结合的思想;数学审美的思想,76,“数”和“形”是数学中最基本的两个概念,数学家华罗庚先生说“数无形时不直观,形无数时难入微”,这就是数形结合思想。在分数的教学中,我们常用饼形图帮助学生理解分数的含义;而在有理数的教学中,我们需要借助数轴表示相反数、理解绝对值的意义、比较有理数大小,表示不等式组的共解集等。在平时的教学中,教师要对具体的数学知识进行深入的分析,挖掘这部分内容蕴涵的数学思想,进行反复渗透,提高学生的认识水平。,77,例30 联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室。你知道第16个气球是什么颜色吗?数学模型的思想,“变中有不变”的思想,符号表示的思想,78,AAABBCAAABBC,例31 一个房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60个,那么有几个椅子和几个凳子?数学推理的思想;归纳的思想,符号表示的思想,数学模型的思想 探索规律的观念;由简至繁的方法;解决问题多种策略椅子数 凳子数 腿的总数 16 0 416=64 15 1 415+31=63 14 2 414+32=62,模型:由416 60=凳子数 推知 4(椅子和凳子的总数)腿的总数=凳子数(扩展:鸡兔同笼),79,数学模型的思想,事实上,这个问题可以用三种方法建立模型。在第二学段讨论过的方法是基于四则运算,还可以用一元一次方程的方法或二元一次方程组的方法解决。启发学生从不同的角度思考同一个问题,有利于学生进行比较,加深对于模型的理解。例51题目与例31完全一样,但是有方程语言的阐述;可以让学生比较解决问题的不同策略。,80,例32 观察下图(图8):请指出从前面、右面、上面看到的相应图形(图9):空间观念(先想后看),81,例34 测量一个土豆的体积。转换的思想;简化的思想;化繁为简的方法 等量替换的方法,82,例38 对全班同学身高的数据进行整理和分析。统计的思想;数据分析的方法,83,例40 袋中装有5个球、4个红球和1个白球。只告诉学生袋中球的颜色为红色和白色,不告诉他们红球数目与白球数目,让学生通过多次有放回的摸球,统计摸出红球和白球的数量及各自所占比例,由此估计袋中红球和白球数目的情况。随机的思想,统计的思想;数据分析的方法,84,例42 绘制学校平面图。按照确定的比例和方位,绘制校园的平面图,包括围墙、主要建筑、主要活动场所、道路等等。空间观念;综合与实践的活动,85,例44 象征性长跑。为了迎接奥运会的召开,某小学决定组织“迎接圣火、跑向北京”的象征性长跑活动,学校向同学们征集活动方案,请你参与设计,其中要解决的问题有:(1)调查你所在的学校到北京天安门的距离约有多少千米?(2)如果一个人每天跑一个“马拉松”,要几天能完成这项长跑?(3)如果全班用接力方式开展这项活动,请你设计一个合理的活动方案。(4)全班交流、展出同学们的不同方案,说明各个方案的特点,同学之间评价方案的优缺点,推荐本班的最佳活动方案。综合与实践的活动;生生互评,86,初中的案例,课标中若干案例(原序号)该案例体现什么数学思想该案例还体现课标的其他哪些方面,87,例54 小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速返回。父亲在报亭看了10分钟报纸后,用15分钟返回家。下面的图形中哪一个表示父亲离家后的时间与距离之间的关系?哪一个图形是表示母亲的行走过程?,88,数形结合的思想、对应的思想、函数的思想,例77 看图说故事。如图27,设计两个不同问题情境,使情境中出现的一对变量,满足图示的函数关系。结合图象

    注意事项

    本文(义务教育数学新“课标”的理念、内容及案例解读.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开