实时荧光定量 PCR技术原理与应用.docx
i=j实时荧光定量PCR技术原理与应用聚合酶链式反应(PCR)可对特定核苷酸片断进行指数级的扩增。在扩增 反应结束之后,我们可以通过凝胶电泳的方法对扩增产物进行定性的分析,也可 以通过放射性核素掺入标记后的光密度扫描来进行定量的分析。无论定性还是 定量分析,分析的都是PCR终产物。但是在许多情况下,我们所感兴趣的是未 经PCR信号放大之前的起始模板量。例如我们想知道某一转基因动植物转基因 的拷贝数或者某一特定基因在特定组织中的表达量。在这种需求下荧光定量 PCR技术应运而生。所谓的实时荧光定量PCR就是通过对PCR扩增反应中 每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在 实时荧光定量PCR反应中,引入了一种荧光化学物质,随着PCR反应的进行, PCR反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集 一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而 得到一条荧光扩增曲线图(如图1,2)。图1实时荧光扩增曲线图T |" I r r I t 11 r J I r I www.bioonom1图2实时荧光扩增曲线图一般而言,荧光扩增曲线扩增曲线可以分成三个阶段:荧光背景信号阶段,荧光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号被荧光 背景信号所掩盖,我们无法判断产物量的变化。而在平台期,扩增产物已不再呈 指数级的增加。PCR的终产物量与起始模板量之间没有线性关系,所以根据最 终的PCR产物量不能计算出起始DNA拷贝数。只有在荧光信号指数扩增阶 段,PCR产物量的对数值与起始模板量之间存在线性关系,我们可以选择在这 个阶段进行定量分析。为了定量和比较的方便,在实时荧光定量PCR技术中引 入了两个非常重要的概念:荧光阈值和CT值。荧光阈值是在荧光扩增曲线上 人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,但一般我 们将荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍。每个 反应管内的荧光信号到达设定的域值时所经历的循环数被称为CT值 (threshold value)。CT值与起始模板的关系研究表明,每个模板的CT值 与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,CT值越小。 利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对 数,纵坐标代表Ct值(如图3所示)。因此,只要获得未知样品的Ct值, 即可从标准曲线上计算出该样品的起始拷贝数。rf LqqkJp !rAurDTCaip Sfrodh:=一 ,疗p Showwk图2.荧光定量标准曲线荧光探针和荧光染料实时荧光定量PCR的化学原理包括探针类和非探针类两种,探针类是利用与靶 序列特异杂交的探针来指示扩增产物的增加,非探针类则是利用荧光染料或者特 殊设计的引物来指示扩增的增加。前者由于增加了探针的识别步骤,特异性更高,但后者则简便易行。1. SYBR Green I图4 SYBR GREEN I工作原理SYBR Green I是一种结合于小沟中的双链DNA结合染料。与双链DNA 结合后,其荧光大大增强。这一性质使其用于扩增产物的检测非常理想。SYBR Green I的最大吸收波长约为497nm,发射波长最大约为520nm。在PCR反 应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA双 链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号, 从而保证荧光信号的增加与PCR产物的增加完全同步。SYBR Green I在核酸 的实时检测方面有很多优点,由于它与所有的双链DNA相结合,不必因为模 板不同而特别定制,因此设计的程序通用性好,且价格相对较低。利用荧光染料 可以指示双链DNA熔点的性质,通过熔点曲线分析可以识别扩增产物和引物 二聚体,因而可以、区分非特异扩增,进一步地还可以实现单色多重测定。此外, 由于一个PCR产物可以与多分子的染料结合,因此SYBR Green I的灵敏度很 高。但是,由于SYBR Green I与所有的双链DNA相结合,因此由引物二聚体、 单链二级结构以及错误的扩增产物引起的假阳性会影响定量的精确性。通过测量 升高温度后荧光的变化可以帮助降低非特异产物的影响1。由解链曲线来分析 产物的均一性有助于分析由SYBR Green I得到定量结果。2.分子信标(molecular beacon)分子信标是一种在靶DNA不存在时形成茎环结构的双标记寡核苷酸探 针。在此发夹结构中,位于分子一端的荧光基团与分子另一端的淬灭基团紧紧靠 近。在此结构中,荧光基团被激发后不是产生光子,而是将能量传递给淬灭剂, 这一过程称为荧光谐振能量传递(FRET)。由于"黑色"淬灭剂的存在, 由荧光基团产生的能量以红外而不是可见光形式释放出来。如果第二个荧光基团 是淬灭剂,其释放能量的波长与荧光基团的性质有关。分子信标的茎环结构中, 环一般为15-30个核苷酸长,并与目标序列互补;茎一般5-7个核苷酸长,并 相互配对形成茎的结构。荧光基团连接在茎臂的一端,而淬灭剂则连接于另一端。 分子信标必须非常仔细的设计,以致于在复性温度下,模板不存在时形成茎环结 构,模板存在时则与模板配对。与模板配对后,分子信标的构象改变使得荧光基 团与淬灭剂分开。当荧光基团被激发时,它发出自身波长的光子(图5)。图5.分子信标工作原理TaqMan探针是多人拥有的专利技术。TaqMan探针是一种寡核苷酸探针, 它的荧光与目的序列的扩增相关。它设计为与目标序列上游引物和下游引物之间 的序列配对。荧光基团连接在探针的5末端,而淬灭剂则在3末端。当完整 的探针与目标序列配对时,荧光基团发射的荧光因与3端的淬灭剂接近而被淬 灭。但在进行延伸反应时,聚合酶的5外切酶活性将探针进行酶切,使得荧光 基团与淬灭剂分离。TaqMan探针适合于各种耐热的聚合酶,如DyNAzymeTM II DNA聚合酶(MJ Research公司有售)。随着扩增循环数的增加,释放出来 的荧光基团不断积累。因此荧光强度与扩增产物的数量呈正比关系。R = ReporterQ =OUENCHERREVERSE PREFERFORWARD4. LUX PrimersLUX (light upon extention)引物是利用荧光标记的引物实现定量的一项新技 术。目标特异的引物对中的一个引物3端用荧光报告基团标记。在没有单链模 板的情况下,该引物自身配对,形成发夹结构,使荧光淬灭。在没有目标片断的 时候,引物与模板配对,发夹结构打开,产生特异的荧光信号(如图7)。与 Taqman探针和分子信标相比,LUX引物通过二级结构实现淬灭,不需要荧光 淬灭基团,也不需要设计特异的探针序列。因为LUX引物是一个相对较新的技 术,所以其应用还有待实践的检验。图7.LUX引物工作原理实时荧光定量PCR技术的应用实时荧光定量PCR技术是DNA定量技术的一次飞跃。运用该项技术,我 们可以对DNA、RNA样品进行定量和定性分析。定量分析包括绝对定量分 析和相对定量分析。前者可以得到某个样本中基因的拷贝数和浓度;后者可以对 不同方式处理的两个样本中的基因表达水平进行比较。除此之外我们还可以对 PCR产物或样品进行定性分析:例如利用熔解曲线分析识别扩增产物和引物二 聚体,以区分非特异扩增;利用特异性探针进行基因型分析及SNP检测等。目 前实时荧光PCR技术已经被广泛应用于基础科学研究、临床诊断、疾病研究 及药物研发等领域。其中最主要的应用集中在以下几个方面:1. DNA或RNA的绝对定量分析。包括病原微生物或病毒含量的检测,转基 因动植物转基因拷贝数的检测,RNAi基因失活率的检测等。2. 基因表达差异分析。例如比较 经过不同处理样本之间特定基因的表达差异 (如药物处理、物理处理、化学处理等),特定基因在不同时相的表达差异以 及cDNA芯片或差显结果的确证3. 基因分型。例如SNP检测,甲基化检测等。随着实时荧光定量PCR技术的推广和普及,该技术必然会得到更广泛的应用。Protocol for Real-Time RT-PCRThis protocol describes the detailed experimental procedure for real-time RT-PCR using SYBR Green I a PCR primer bank for quantitative gene expression analysis. Nucleic Acids Research 31(24): e154; pp.1-8. Please refer to this paper and the PrimerBank Help page for more background information. This protocol is also available in Microsoft Word format here. Here is a one-page succinct protocol. The procedure begins with reverse transcription of total RNA. The cDNA is then used as template for real-time PCR with gene specific primers. You may need to modify this protocol if you use different reagents or instruments for real-time PCR.Time requiredcDNA synthesis: 2 hours.real-time PCR: 2 hours.Dissociation curve analysis: 0.5 hour.Reagents and EquipmentsOligonucleotide Primers. Gene specific primers are retrieved from PrimerBank (http:/pga.mgh.harvard.edu/primerbank/). These primers are ordered from the MGH DNA Core facility (https:/dnacore.mgh.harvard.edu/synthesis/index.shtml). All the primers are desalted and both UV absorbance and capillary electrophoresis are used to assess the quality of primer synthesis.Mouse total liver RNA (Stratagene).Mouse total RNA master panel (BD Biosciences / Clontech).SYBR Green PCR master mix, 200 reactions (Applied Biosystems).Optical tube and cap strips (Applied Biosystems).SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen).25 bp DNA ladder (Invitrogen).ABI Prism 7000 Sequence Detection System (Applied Biosystems).ABI Prism 7000 SDS software (Applied Biosystems).3% ReadyAgarose Precast Gel (Bio-Rad).Agarose gel electrophoresis apparatus (Bio-Rad).Detailed procedureReverse TranscriptionReverse Transcription is carried out with the SuperScript First-Strand Synthesis System for RT-PCR. The following procedure is based on Invitrogens protocol.1. Prepare the following RNA/primer mixture in each tube:Total RNA 5 mgrandom hexamers (50 ng/ml) 3 ml10 mM dNTP mix 1 mlDEPC H2O to 10 ml2. Incubate the samples at 65°C for 5 min and then on ice for at least 1 min.3. Prepare reaction master mixture. For each reaction:10x RT buffer 2 ml25 mM MgCl2 4 ml0.1 M DTT 2 mlRNAaseOUT 1 ml4. Add the reaction mixture to the RNA/primer mixture, mix briefly, and then place at room temperature for 2 min.5. Add 1 ml (50 units) of SuperScript II RT to each tube, mix and incubate at 25 C for 10 min.6. Incubate the tubes at 42°C for 50 min, heat inactivate at 70°C for 15 min, and then chill on ice.7. Add 1 ml RNase H and incubate at 37°C for 20 min.8. Store the 1st strand cDNA at -20°C until use for real-time PCR.Real-time PCR1. Normalize the primer concentrations and mix gene-specific forward and reverse primer pair. Each primer (forward or reverse) concentration in the mixture is 5 pmol/ml.2. Set up the experiment and the following PCR program on ABI Prism SDS 7000. Do not click on the dissociation protocol if you want to check the PCR result by agarose gel. Save a copy of the setup file and delete all PCR cycles (used for later dissociation curve analysis). Please note the extension steps are slightly different from described in our paper.1) 50°C 2 min, 1 cycle2) 95°C 10 min, 1 cycle3) 95 °C 15 s -> 60 °C 30 s -> 72 °C 30 s, 40 cycles4) 72°C 10 min, 1 cycle3. A real-time PCR reaction mixture can be either 50 ml or 25 ml. Prepare the following mixture in each optical tube.25 ml SYBR Green Mix (2x)0.5 ml liver cDNA2 ml primer pair mix (5 pmol/ml each primer)22.5 ml H2O OR 12.5 ml SYBR Green Mix (2x)0.2 ml liver cDNA1 ml primer pair mix (5 pmol/ml each primer)11.3 ml H2O4. After PCR is finished, remove the tubes from the machine. The PCR specificity is examined by 3% agarose gel using 5 ml from each reaction.5. Put the tubes back in SDS 7000 and perform dissociation curve analysis with the saved copy of the setup file.6. Analyze the real-time PCR result with the SDS 7000 software. Check to see if there is any bimodal dissociation curve or abnormal amplification plot.TroubleshootingHere I listed a few major causes for real-time PCR failures. Please read the PrimerBank Help page for more details.Little or no PCR product. Poor quality of PCR templates, primers, or reagents may lead to PCR failures. First, please include appropriate PCR controls to eliminate these possibilities. Some genes are expressed transiently or only in certain tissues. In our experience, this is the most likely cause for negative PCR results. Please read literature for the gene expression patterns. One caveat is that microarrays are not always reliable at measuring gene expressions. After switching to the appropriate templates, we obtained positive PCR results in contrast to the otherwise negative PCRs (see our paper for more details).Poor PCR amplification efficiency. The accuracy of real-time PCR is highly dependent on PCR efficiency. A reasonable efficiency should be at least 80%, Poor primer quality is the leading cause for poor PCR efficiency. In this case, the PCR amplification curve usually reaches plateau early and the final fluorescence intensity is significantly lower than that of most other PCRs. This problem may be solved with re-synthesized primers.Primer dimer. Primer dimer may be occasionally observed if the gene expression level is very low. If this is the case, increasing the template amount may help eliminate the primer dimer formation.Multiple bands on gel or multiple peaks in the melting curve. Agarose gel electrophoresis or melting curve analysis may not always reliably measure PCR specificity. From our experience, bimodal melting curves are sometimes observed for long amplicons (> 200 bp) even when the PCRs are specific. The observed heterogeneity in melting temperature is due to internal sequence inhomogeneity (e.g. independently melting blocks of high and low GC content) rather than non-specific amplicon. On the other hand, for short amplicons (< 150 bp) very weak (and fussy) bands migrating ahead of the major specific bands are sometimes observed on agarose gel. These weak bands are super-structured or single-stranded version of the specific amplicons in equilibrium state and therefore should be considered specific. Although gel electrophoresis or melting curve analysis alone may not be 100% reliable, the combination of both can always reveal PCR specificity in our experience.Non-specific amplicons. Non-specific amplicons, identified by both gel electrophoresis and melting curve analysis, give misleading real-time PCR result. To avoid this problem, please make sure to perform hot-start PCR and use at least 60°C annealing temperature. We noticed not all hot-start Taq polymerases are equally efficient at suppressing polymerase activity during sample setup. The SYBR Green PCR master mix described here always gives us satisfactory results. If the non-specific amplicon is persistent, you have to choose a different primer pair for the gene of interest.