两个计数原理习题课(2课时).ppt
,一、复习回顾:,两个计数原理的内容是什么?解决两个计数原理问题需要注意什么问题?有哪些技巧?,复习引入练习:,三个比赛项目,六人报名参加。)每人参加一项有多少种不同的方法?)每项人,且每人至多参加一项,有多少种不同的方法?)每项人,每人参加的项数不限,有多少种不同的方法?,升华发展,一、排数字问题,用0到6这7个数字,可以能组成多少个没有重复数字的四位偶数?【错解一】分4步进行:第1步,排个位,在0,2,4,6中选一个有4种方法;第2步,排十位,有6种方法;第3步,排百位有5种方法;第4步,排千位有4种方法共有方法种数4654480.,【错解二】考虑到首位不能排数字0,分4步进行:第1步,排千位,在1,2,3,4,5,6中选1个,有6种方法;第2步,排个位,在0,2,4,6中选1个,有4种方法;第3步,排十位,在余下的5个数字中选1个,有5种方法第4步,排百位,在余下的4个数字中选1个,有4种方法;共有6454480种方法,【错因】错解一忽视数字0不能在首位的约束,按此排法有可能为“0134”这种不符合要求的情况错解二忽视了题目“无重复数字的四位数”的约束,按此排法有可能为“2032”,不符合条件若先排首位,应考虑排的是1,3,5还是2,4,6,因它直接关系到第2步排个位的选取;若先排个位,应考虑是否排0,因为它关系到首位的选排,【正解】分两类:第1类,首位取奇数数字(可取1,3,5中任一个),则末位数字可取0,2,4,6中任一个,而百位数字不能取与这两个数字重复的数字,十位则不能取与这三个数字重复的数字,故共有3454240种取法第2类,首位取2,4,6中某个偶数数字,如2时,则末位只能取0,4,6中任一个,百位又不能取与上述重复的数字,十位不能取与这三个数字重复的数字,故共有3354180种取法故共有240180420个无重复数字的四位偶数.变式:改为奇数呢?,1、将数字1,2,3,4,填入标号为1,2,3,4的四个方格里,每格填一个数,则每个格子的标号与所填的数字均不同的填法有_种,变式练习:,分析及解法:号方格里可填,三个数字,有种填法。号方格填好后,再填与号方格内数字相同的号的方格,又有种填法,其余两个方格只有种填法。所以共有3*3*1=9种不同的方法。,二、映射个数问题:,例2 设A=a,b,c,d,e,f,B=x,y,z,从A到B共有多少种不同的映射?,333333=729,三、涂色问题:,例、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3 种,第二步,m2=2 种,第三步,m3=1 种,第四步,m4=1 种,所以根据乘法原理,得到不同的涂色方案种数共有 N=3 2 11=6 种。,练习:将种作物种植在如图所示的块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有种(以数字作答),42,解析:第一类:前三块种三种作物,则32122=24第二类:前三块种两种作物,则321(1+2)=18所以 共有24+18=42种种植方法,四、子集问题,规律:n元集合 的不同子集有个。,例:集合A=a,b,c,d,e,它的子集个数为,真子集个数为,非空子集个数为,非空真子集个数为。,五、综合问题:,例、若直线方程ax+by=0中的a,b可以从0,1,2,3,4这五个数字中任取两个不同的数字,则方程所表示的不同的直线共有多少条?2+44-2=16,、75600有多少个正约数?有多少个奇约数?,解:由于 75600=2433527,75600的每个约数都可以写成的形式,其中,于是,要确定75600的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5432=120个.,解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m1=12=2 条 第二类,m2=12=2 条 第三类,m3=12=2 条 所以,根据加法原理,从顶点A到顶点C1最近路线共有 N=2+2+2=6 条。,3.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?,4、如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有()对A.12 B.24 C.36 D.48,B,5.(课本P97页2)如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?,甲地,乙地,丙地,丁地,解:从总体上看,由甲到丙有两类不同的走法,第一类,由甲经乙去丙,又需分两步,所以 m1=23=6 种不同的走法;第二类,由甲经丁去丙,也需分两步,所以 m2=42=8 种不同的走法;所以从甲地到丙地共有 N=6+8=14 种不同的走法。,6.如图,该电路,从A到B共有多少条不同的线路可通电?,A,B,解:从总体上看由A到B的通电线路可分三类,第一类,m1=3 条 第二类,m2=1 条 第三类,m3=22=4,条 所以,根据分类原理,从A到B共有 N=3+1+4=8 条不同的线路可通电。,在解题有时既要分类又要分步。,(备选题)某城市在中心广场建造一个花圃,花圃分为6个部分(如右图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_种.,(1)与同色,则也同色或也同色,所以共有N1=43221=48种;,所以,共有N=N1+N2+N3=48+48+24=120种.,(2)与同色,则或同色,所以共有N2=43221=48种;,(3)与且与同色,则共N3=4321=24种,解法一:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求,谢谢大家的努力!,