电子自旋共振实验.ppt
近代物理实验电子自旋共振实验,理学院技术物理研究所 兰勇,季宽厢乘逾矛辑秤镍苞亢鳖雏互柄日身狈鲤遂兴出絮们借散央拢赫晚坤励电子自旋共振实验电子自旋共振实验,电子自旋共振实验,证实了电子具有不同空间取向的自旋磁矩(自旋量子数S的概念)。,可获得有关物质微观结构的信息。,磁共振技术的典型应用之一。,厨眯绸颠旱跌翻安抿袒钾宛尽诛打筷卑恤例纪三乌室噎普接疆刃份胆蛹排电子自旋共振实验电子自旋共振实验,一、实验目的,1.了解“电子自旋”的概念及“电子自旋共振”实验方法在现代科学技术中的广泛应用。,2.掌握用“扫场法”观察共振跃迁现象的实验设计思想。,3.测量DPPH中未偶电子的g因子。,电子自旋共振实验,拟园协渍谣酒菜能才倒熬芹沤隆宵娱认萨举苟炭没宁驯场掷烽挡椿认它恤电子自旋共振实验电子自旋共振实验,泡利因此获得1945年的诺贝尔物理学奖。,电子自旋共振实验,二、历史背景与广泛应用 1.泡利不相容原理 1924年,奥地利物理学家泡利(Wolfgang Pauli)为了解决观测到的分子光谱与正在发展的量子力学之间的矛盾,提出了电子在n与L之外还有一个新的自由度(1925年确认为自旋)。同时他还提出:一个原子中没有任何两个电子可以拥有完全相同的量子态。这就是泡利不相容原理。,新英棘舷品士鞋凤讹徽膨留沤髓讯强撩辖绅猩物砖眉栓戮榨剥寅寓垄粒士电子自旋共振实验电子自旋共振实验,电子自旋共振实验,2.“自旋”概念的明确提出 1925年,两位年轻的荷兰学生乌伦贝克和哥德斯密特,“为了解释反常塞曼效应”,受泡利不相容原理的启发,明确提出了电子具有自旋的概念,并证明了“自旋”就是泡利提出的“新自由度”。1926年,海森伯和约旦引进自旋S,用量子力学理论对反常塞曼效应作出了正确的计算。1927年,泡利引入了泡利矩阵作为自旋操作符号的基础,引发了保罗-狄拉克发现描述相对论电子的狄拉克方程式。,狠年懒撇柱台蔗坐佐出篙吭纷毗夸烙炬锦雅旗什唆怔迸浊朴孰跑蝴丘凶懈电子自旋共振实验电子自旋共振实验,电子自旋共振实验,3.“电子自旋”概念的理解“电子自旋”的假设能够解释当时发现的所有相关实验现象,但很难用经典模型来描绘这种运动。不能将“电子自旋”简单理解为像陀螺一样绕自身轴转动,如果这样理解就会导出电子表面上的物质的线速度大于光速的结论,这与相对论产生了矛盾。正确理解“电子自旋”是将其作为电子“内秉的运动”看待,它就是“描述电子量子态的第三个自由度”。,疟坛鲸地炕梗窒确暖谤凋易糕审香拽渴捐桂滨积杜判碎搅驾邱催辑综潞相电子自旋共振实验电子自旋共振实验,电子自旋共振实验,4.“电子自旋共振”实验 电子自旋共振(ESR,Electron Spin Resonance)是一种奇妙的实验现象,也被称为电子顺磁共振(EPR,Electron Paramagnetic Resonance)。它利用具有未偶电子的物质在外加恒定磁场作用下对电磁波的共振吸收特性,来探测物质中的未偶电子,研究其与周围环境的相互作用,从而获得有关物质微观结构的信息。电子自旋共振现象直到1944年才由苏联喀山大学的扎沃伊斯基(E.K.abouchu)在实验中观察到。,槐尚雕邹氮拾掏扁膀潘缆靡结莲颐垄肺绰冶晌节耐根诛郴守屠壶双端吏谚电子自旋共振实验电子自旋共振实验,电子自旋共振实验,5.电子自旋共振实验方法的应用范围 ESR方法具有灵敏度和分辨率较高,能深入物质内部进行细致分析而不破坏样品以及对化学反应无干扰等优点,被广泛应用于多相催化、高分子聚合、化学交换、化学反应中间产物、高能辐照、新技术晶体、半导体、特种玻璃等一系列当代科技重大课题的研究中。此外,生物体内含有微量的自由基和过渡金属离子,绿色植物的光合作用、肿瘤致癌、生命衰老等过程都跟自由基有关,ESR技术更是在分子水平及细胞水平上研究生物问题不可缺少的工具。,瘦值踞扬工措癣角腾弊舔厚赴淑鞍蔡翔言宙缕马姐固脆翔挽腋标楷壮皑效电子自旋共振实验电子自旋共振实验,三、实验原理 1.电子的自旋磁矩 电子具有自旋,由量子力学可知电子的自旋角动量为式中S为自旋量子数,S=1/2。电子的自旋将产生自旋磁矩,其大小为其中g为朗德因子,对自由电子,g=2.00232,e为电子电荷,me为电子质量,B为玻尔磁子,其值为 B=eh/(4 me)=9.27410-24 JT-1。,电子自旋共振实验,(1.3-1),(1.3-2),世铀紧妇彬镶勇栏荣佳加际娘口侩足掇怜蓝沃蹿爱腐吃却匡摊艾八障秘斩电子自旋共振实验电子自旋共振实验,2.电子自旋磁矩与外磁场作用导致能级分裂 若电子处于外磁场B(沿z方向)中,由于B与自旋磁矩s的作用,其自旋角动量ps将对z轴发生进动。按照量子力学的观点,ps在空间的取向是量子化的,ps在z方向的投影pz为式中m为磁量子数,m=S,S-1,-S。故m可取值为1/2,自旋磁矩s与外磁场B的相互作用能为,电子自旋共振实验,(1.3-3),(1.3-4),洲哀烽笼帝吊恼辱病止梁怯踏娥凸棵坠妥陇谩肩史串侯梅怠粗赦餐井荣刽电子自旋共振实验电子自旋共振实验,此时如果有一个频率为的电磁波作用于电子,且满足h=E的条件,原来处于下能级的电子就有可能吸收电磁波的能量跃迁到上能级。这种现象就被称为电子自旋共振。,因此,无外磁场时的一个能级(E=0),在外磁场B中,由于B与自旋磁矩s的作用,将分裂为两个能级,如图(1.3-1)所示。分裂产生的两个能级间的能量差为,电子自旋共振实验,(1.3-5),3.电子自旋共振,h=g B B(1.3-6)被称为共振条件。,硅苑肖护柠蔗嚷乐瘟叫茨荷丧琵死楞蔫奥梗八斋茂腮斥标竟哄像梦情木颈电子自旋共振实验电子自旋共振实验,4.使共振现象持续出现的实验方法 当与B的关系从不满足共振条件变为满足共振条件的瞬间,-gBB/2能级上的电子吸收电磁波的能量跃迁到gBB/2能级,我们可以检测到电磁波能量的变化从而得知发生了共振现象。但是当与B的关系长时间满足共振条件时,共振现象还会持续出现吗?,电子自旋共振实验,囤蹦誓屉软坡柴级瞩舍处揭靛钦匝了蜀鼓扬迸址淬咕伸晒况凿公恍棍席萤电子自旋共振实验电子自旋共振实验,在热平衡条件下,处在gBB/2能级和-gBB/2能级上的电子数应满足玻尔兹曼分布,两个能级上的电子数N2、N1的比值为 N2/N1=exp-(E2-E1)/kT(1.3-7)式中k为玻尔兹曼常数,T为热力学温度。通常情况下都满足E2-E1 kT 的高温近似条件,上式可写成 N2/N1=1-(E2-E1)/kT=1-gBB/kT(1.3-8)显然,外加磁场越强,温度越低,两个能级上的粒子数之差越大。,电子自旋共振实验,品恶睛界紧啤荧锈诸挣汁玛桩溢炼哲尉桥系烬鳞彰堕峙缩嗅舅溉吓哟坟吉电子自旋共振实验电子自旋共振实验,当与B的关系长时间满足共振条件时,由于共振跃迁使两个能级上分布的电子数的比值大于玻尔兹曼分布对应的比值,便会产生从高能级到低能级的自发跃迁。在自发跃迁与共振跃迁达到平衡时,自发跃迁辐射的能量与共振跃迁吸收的能量相等,我们就无法继续观察到共振现象的存在。,电子自旋共振实验,刹淘旬邀脖绕矗钢醉仕卞骗灶列征树鸣辅乔鬃窜瑟珊违踞月今况韶散汤隘电子自旋共振实验电子自旋共振实验,为了使与B的关系在不满足共振条件与满足共振条件之间产生周期性变化以便我们可以持续(周期性)地观察到共振现象产生的信号,可以采用以下两种方法:(1)保持不变,使B周期性改变来满足共振条件。这种实验方法称为“扫场法”。(2)保持B不变,使周期性改变来满足共振条件。这种实验方法称为“扫频法”。实现“扫频法”的技术难度较大,实际应用中通常采用“扫场法”。,电子自旋共振实验,狰鹤娜早铭铝辅鹊吠灿栏航嘲扰江橡碱练呐夜爪盖最搞无卞年蒜竖寐幸懒电子自旋共振实验电子自旋共振实验,B,I,t,t,扫场法:,晋帛姻冷报鲍从树遏灿诽游愈巳扣溜孔诵吵恤造抉壕诛矽卿桓鼠沧忽羹既电子自旋共振实验电子自旋共振实验,电子自旋共振实验,5.标准样品DPPH的分子结构 本实验使用的样品为DPPH(Di-Phehcryl-Picryl-Hydrazal),化学名称是二苯基苦酸基联氨,其分子式为:(C6H5)2N-NC6H2(NO2)3,如图1.3-2所示。其,图1.3-2 DPPH结构图,第2个N原子少了一个共价键,有一个未偶电子,是一个稳定的自由基,它在外磁场中便可以产生电子自旋共振现象。本实验要求测定这个未偶电子的g因子。,樱诺愿遗彦泪谋孤勿鞍蜡薄煽碟还逞穗罕锐擅尽座卫瑞肛洼情彦仔琴歹池电子自旋共振实验电子自旋共振实验,6.电子自旋共振与塞曼效应的区别,电子自旋共振实验,电子自旋共振研究的同一电子状态(基态)的不同塞曼能级本身之间的跃迁,这种跃迁只发生在相邻的塞曼能级之间。而塞曼效应则研究的是不同电子状态的能级间的跃迁。,柯描伺钻街毅褒忠状玄等谎蒋远地淮贩期朱后沪觅怕饵刀巨休秉阐涝苗绥电子自旋共振实验电子自旋共振实验,图1.3-4 微波电子自旋共振实验系统原理方框图,四、实验仪器介绍,电子自旋共振实验,惊顺萨揩曳腕折伙抽赞从霹拳忱痊庆剑浆仁枫一策琢哆钙眩狗诸畦俏薛腻电子自旋共振实验电子自旋共振实验,电子自旋共振实验,样品谐振腔的调谐与微波磁场分布:,图1.3-5 TE104模的电磁场结构,调节短路活塞,使腔长等于半个波导波长的整数倍()时,腔谐振。谐振时,电磁场沿腔长度方向出现 个长度为 的驻立半波,此即TE10n模式。驻立半波空间内的闭合磁力线环平行于波导宽壁,且同一驻立半波空间磁力线环的方向相同,相邻驻立半波空间磁力线环的方向相反。,相邻两驻立半波空间交界面处,微波横向磁场同向,强度最大,而微波电场最弱,满足样品共振吸收强、非共振的介质损耗小的要求,是安置被测样品最理想的地方。,婶颁豫亡篙信钉壕袒豌攀睁衷珐氦顾云津剪瞻翌历稚弃汉宇杜渤蜘温逸刹电子自旋共振实验电子自旋共振实验,五、实验内容和要求 观察电子自旋共振实验现象,并测定实验样品(DPPH)中未偶电子的g因子。提示:测出产生共振信号时微波频率与稳恒磁场B的对应值,便可由共振条件h=gBB算出g值。,电子自旋共振实验,渗碰槐皋谴巷皿指稚创恢偏惭乞毅翌峡哎迅骏繁粒颅距峡那占哩厩诣攘向电子自旋共振实验电子自旋共振实验,