欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    多元函数的极值和最值.PPT

    • 资源ID:5146533       资源大小:2.19MB        全文页数:39页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多元函数的极值和最值.PPT

    实例:某商店卖两种牌子的果汁,本地牌子每瓶进价1元,外地牌子每瓶进价1.2元,店主估计,如果本地牌子的每瓶卖 元,外地牌子的每瓶卖 元,则每天可卖出 瓶本地牌子的果汁,瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可取得最大收益?,每天的收益为,求最大收益即为求二元函数的最大值.,一、问题的提出,二、多元函数的极值和最值,播放,1、二元函数极值的定义,(1),(2),(3),例1,例,例,2、多元函数取得极值的条件,证,仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的驻点.,驻点,极值点,问题:如何判定一个驻点是否为极值点?,注意:,解,二、最值应用问题,函数 f 在闭域上连续,函数 f 在闭域上可达到最值,最值可疑点,驻点,边界上的最值点,特别,当区域内部最值存在,且只有一个极值点P 时,为极小 值,为最小 值,(大),(大),依据,例3.,解:设水箱长,宽分别为 x,y m,则高为,则水箱所用材料的面积为,令,得驻点,某厂要用铁板做一个体积为2,根据实际问题可知最小值在定义域内应存在,的有盖长方体水,问当长、宽、高各取怎样的尺寸时,才能使用料最省?,因此可,断定此唯一驻点就是最小值点.,即当长、宽均为,高为,时,水箱所用材料最省.,例4.有一宽为 24cm 的长方形铁板,把它折起来做成,解:设折起来的边长为 x cm,则断面面积,一个断面为等腰梯形的水槽,倾角为,积最大.,为,问怎样折法才能使断面面,令,解得:,由题意知,最大值在定义域D 内达到,而在域D 内只有,一个驻点,故此点即为所求.,实例:小王有200元钱,他决定用来购买两种急需物品:计算机磁盘和录音磁带,设他购买 张磁盘,盒录音磁带达到最佳效果,效果函数为 设每张磁盘8元,每盒磁带10元,问他如何分配这200元以达到最佳效果,问题的实质:求 在条件 下的极值点,三、条件极值拉格朗日乘数法,极值问题,无条件极值:,条 件 极 值:,条件极值的求法:,方法1 代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,还有其它条件限制,例如,条件极值:对自变量有附加条件的极值,方法2 拉格朗日乘数法.,如方法 1 所述,则问题等价于一元函数,可确定隐函数,的极值问题,极值点必满足,设,记,例如,故,故有,引入辅助函数,辅助函数F 称为拉格朗日(Lagrange)函数.,利用拉格,极值点必满足,则极值点满足:,朗日函数求极值的方法称为拉格朗日乘数法.,推广,拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.,设,解方程组,可得到条件极值的可疑点.,例如,求函数,下的极值.,在条件,例5.,要设计一个容量为,则问题为求x,y,令,解方程组,解:设 x,y,z 分别表示长、宽、高,下水箱表面积,最小.,z 使在条件,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱,试问,得唯一驻点,由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.,因此,当高为,思考:,1)当水箱封闭时,长、宽、高的尺寸如何?,提示:利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时,欲使造价,最省,应如何设拉格朗日函数?长、宽、高尺寸如何?,提示:,长、宽、高尺寸相等.,解,则,多元函数的极值,拉格朗日乘数法,(取得极值的必要条件、充分条件),多元函数的最值,四、小结,思考题,思考题解答,练 习 题,练习题答案,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,二、多元函数的极值和最值,

    注意事项

    本文(多元函数的极值和最值.PPT)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开