欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第九章时间序列分析预测法.ppt

    • 资源ID:5145252       资源大小:362KB        全文页数:46页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第九章时间序列分析预测法.ppt

    第九章 时间序列分析预测法,时间序列分析概念移动平均法概念与应用指数平滑法概念与应用马尔可夫预测法与季节分析预测法概念与应用,薯拼镜穗落税太牡亨廷庸俏酣六了帘葡醚氮董嘱省羡很钞饶掠灯龚旨湘浸第九章时间序列分析预测法第九章时间序列分析预测法,定量预测概述定量预测又称数学模型预测法。它是运用一定的统计和数学方法,通过建立数学分析模型来描述和预测事物变化发展规律的一种预测方法。因此有两个明显的特点:受人的主观因素影响较小,结果比较客观;对数据的要求、预测者专业能力的要求比较高由时间序列预测方法和回归分析预测方法两大类组成。,谎却绳潮馁秉茸塑许呀靴挞鲸互凋径妻袒唉砖彩荫茂陷靠蔓鹰蹈胸言踏稗第九章时间序列分析预测法第九章时间序列分析预测法,定量预测方法,时间序列预测法,回归分析预测法,算术平均预测(简单、移动、指数平滑),季节分析预测(水平、趋势变动),马尔可夫预测(市场占有率预测),趋势预测(直线拟合、指数曲线拟合),一元线型回归预测,多元线型回归预测,非线性回归预测,自相关回归预测,券储列脂烷睁盟贤燕茵疼芜辟拎升僧第耶恋焉愤呜威却淫互材听渴纂不描第九章时间序列分析预测法第九章时间序列分析预测法,最早的时间序列分析可以追溯到7000年前的古埃及。古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间序列。对这个时间序列长期的观察使他们发现尼罗河的涨落非常有规律。由于掌握了尼罗河泛滥的规律,使得古埃及的农业迅速发展,从而创建了埃及灿烂的史前文明。按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。,9.1 时间序列预测法概述,店象擒糙咽圣野栅锥嗅特崇郁锡耿况丁蔓告榷余港锑炊您秧马苍耍邹咬宽第九章时间序列分析预测法第九章时间序列分析预测法,时间序列预测方法,是把统计资料按时间发生的先后进行排序得出的一连串数据,利用该数据序列外推到预测对象未来的发展趋势。一般可分为确定性时间序列预测法和随机时间序列预测法。确定性时间序列法有:移动平均法、指数平滑法、差分指数平滑法、自适应过滤法、直线模型预测法、成长曲线模型预测和季节变动预测法等等。随机时间序列是通过建立随机时间序列模型来预测,方法和数据要求都很高,精度也很高,应用非常广泛。,鬼历忧辱戌呵否拇晦暑颗窖奶蒙杆俊莱柔宛锡啼懂湘铲草亥砍厚脉寥毡琶第九章时间序列分析预测法第九章时间序列分析预测法,时间序列预测法的优缺点,优点:在分析现在、过去、未来的联系时,以及未来的结果与过去、现在的各种因素之间的关系时,效果比较好。数据处理时,并不十分复杂缺点:反映了对象线性的、单向的联系 预测稳定的、在时间方面稳定延续的过程 并不适合进行长期预测,痉座诡率俞脆钩涕烙局防傻砧革苛苍峨险挺谭奉垛池群粪芭旋发汝参溶庇第九章时间序列分析预测法第九章时间序列分析预测法,9.2 移动平均预测法,9.2.1 算术平均数法(Method of Simple Average)大前 前 昨 今 明预测模型:适用范围:预测对象的历史数据呈水平型变动状态,逐期增长量大体相同的情况;短期预测;可推广应用趋势型变动的历史数据。,芍乃腊绷熏柯儿盗碟射竭筒辱整椎稍羡惭嘲遥舌漆穷堰射竭捉耕芽艳抚劫第九章时间序列分析预测法第九章时间序列分析预测法,19992006年我国水电消费量在能源消费总量中所占的比重如下表所示,使用算术平均法预测2007年水电消费量在能源消费总量中所占的比重。,解:根据预测模型即我国2007年水电消费在能源消费总量中所占比重为5.3%。,案例,蔑窃役狐弛策触顷曰蓟狱扑廓绥即凶禁哥辜希侣泼涸谊艇网挺绦滑甸招鼠第九章时间序列分析预测法第九章时间序列分析预测法,9.2.2 简单移动平均预测,移动平均预测(Method of Single Moving Average)是利用过去若干期实际的平均值,来预测当期的值。方法上与算术平均法类似。比如,19921996年我国市镇人口在总人口所占的比重如表所示,试推广应用移动平均法预测1997年我国市镇人口在总人口中所占的比重。年份19921993199419951996比重(%)27.6328.1428.6229.0429.3719921996年市镇人口在总人口中所占比重分别为27.63%、28.14%、28.62%、29.04%和29.37%,平均比重为:则1997年市镇人口在总人口中所占比重为:28.56%,舷疆佯袍媒杏莱蛤辊备皿押衡卢盯锄题畦镐阵奴率贡川院钮们况师赢厩绿第九章时间序列分析预测法第九章时间序列分析预测法,一般可以通过比较预测均方差(MSE)和绝对均差(MAE),来分析预测的误差。简单移动平均预测的明显缺点是:它假设平均数内的各项观察值对于未来都具有相同的影响,但一般在实际中,往往是越接近预测期的观察值对未来的影响越大,因此又有其它方法来修正。,叉玉帖懈勺希咎钡我禄墩谅睁翰枉绢黄讫瞎脑地孵埃贩伴樟签上佳造誊你第九章时间序列分析预测法第九章时间序列分析预测法,9.2.3 加权移动平均预测,根据时间顺序排列的历史数据,每个数据对预测值的重要性是不同的,将各个数据赋予不同的权重,可以更准确的预测。往往会对于离预测期越近的数据赋予越大的权重。这样可以更接近事物真实的发展趋势。,阁雁人恃之堂疗报桥隔盲录贿疮央沫绳孤狡峦龋忱耍霉表劈钢装烙利较睡第九章时间序列分析预测法第九章时间序列分析预测法,案例,20012006年我国原煤占能源生产总量的比重如表所示,若给予20012006年原煤占能源生产总量比重的权数分别为1、2、3、4、5、6,试预测2007年原煤所占的比重。年份 2001 2002 2003 2004 20052006比重(%)74.1 74.3 74.0 74.6 75.374.8根据预测模型可得:即2007年我国原煤占能源生产总量的比重为74.7%,韶躺多痛斟核窄群讹耽河炸唉朱淄惮进酞讥陈沉蓖挥购债闲距元瘦阔跳干第九章时间序列分析预测法第九章时间序列分析预测法,可以看出,加权移动平均的特点是:强调时间序列近期的变动对未来具有较大影响,从而更为合理。但是有时会受加权系数选择的影响。总之,简单移动平均和加权平均最适用于没有明显趋势的、比较平稳的时间序列,如果时间序列明显表现出某种趋势性特征,或者波动很大,预测效果就会很差。,耕忘鹰佬傍吨坑谨停伏注勾围驶俱研澄甩即晋救竭乍撮服赤烈坛脱割慨督第九章时间序列分析预测法第九章时间序列分析预测法,趋势性数列,平稳性数列,侈悯液纫硕戎苏秽瞩趁砂仓瓮诫紫堑孩腔嵌增吭状援陌乖彝碴述泅蹬疹暖第九章时间序列分析预测法第九章时间序列分析预测法,9.3 指数平滑预测法,指数平滑(Method of Exponential Smoothing)是一种特殊的加权平均法,特点是对离预测期较近的历史数据给予较大的权数,对较远的给予较小的权数,权数由近到远呈指数递减,所以称之为指数平滑。有着非常广泛的运用。一般有简单(一次)指数平滑(Simple Exponential Smoothing),二次指数平滑(Double Exponential Smoothing)和更高次的指数平滑。,是歼座冲装专娥受织粕湿段洁酸逞衷梆葡佯贩庐皿县顽瓜离韩脑鬼冀计赏第九章时间序列分析预测法第九章时间序列分析预测法,9.3.1 简单指数平滑,简单指数平滑的基本公式为:也可表示为:t期估算值a*(t期实际值)+(1-a)*(t-1期估算值)其中,a为平滑常数。可以看出,本期的简单平滑值等于本期的实际值与上一期平滑值的加权平均,权数由a决定。,甘晨话犀志中燃髓赠临潮霍舰孩聂乍摹事纳搂私宣叠扎嫡棵郑浚恫赘躁权第九章时间序列分析预测法第九章时间序列分析预测法,可以发现,这实际上是时间序列的观察值和初始平滑值的加权平均。并且这一权数是递减的,距离估算期越远的观察值对当前估算结果的影响越小。如,当a0.8时,分别为,0.8,0.16,0.032,0.0064。所以,可以起到类似加权移动平均的作用。对于初始值。假定2000年的销售额600万为初始值。则,下一期的预测值为:,胜避够殴役缚屏凹寝帐日缆留纯申妇梗猾旷剥香们缄怠锅瘴泄搏揉嘎洞扫第九章时间序列分析预测法第九章时间序列分析预测法,案例,19911996年我国人均布产量如表第栏所示,试用一次指数平滑法(a分别取0.4和0.8)计算19911996年的理论预测值,并预测1997年我国人均布产量。为比较预测效果,分别计算a取0.4和0.8时的均方误差。,旷棕壤合旅噪揪土臣欲恼次溶肪链恩随欠敖疥剪载促署淋钝虞穷闲褒跌惫第九章时间序列分析预测法第九章时间序列分析预测法,简单指数平滑预测准确性相当程度上取决于a的值,一般而言,如果时间序列是比较平稳的,应尽量选择比较小的a值,这样可以降低指数平滑的敏感性;而当时间序列的波动比较大时,应尽可能选择较大的a值,这样可以使预测结果能比较迅速的对新情况做出调整。但是a值取得过大,又容易丧失整个序列的趋势性。根据经验,选取的a值一般在0.30.5之间比较理想。,庚驰脱诫知邵室劲至宇庇宝惰列涣赡演慨磨带荒赎做逗叠办捕膏栅曼诧蜜第九章时间序列分析预测法第九章时间序列分析预测法,简单指数平滑的局限性,简单指数平滑的缺点是比较适用于时间序列趋势不明显的场合,而当序列明显表现出线型趋势时,简单指数平滑预测值总会落后于实际值的变动。例如,预测某省农民家庭人均食品支出额,假如a取0.9。,敞物樟吧菜卸捍责友美吸邹袜微七由贤摆宣蛙国癣晶剧规菩琵浆敞澈恰移第九章时间序列分析预测法第九章时间序列分析预测法,9.3.2 布朗线型指数平滑,在时间序列呈现出随趋势变动的情况下,通常采用布朗指数平滑(Browns Linear Exponential Smoothing),也称二次指数平滑。首先先计算出简单和二次指数平滑值之后,再建立趋势方程:T为时间间隔,潞稀档镊国呸庸泊潜窘斤稼棱吠黔宜婴间矾傣锚偏酥嗅追眶鲁卉职撬哎姜第九章时间序列分析预测法第九章时间序列分析预测法,可以通过计算出的简单和二次指数平滑值来确定系数a,b例如,2003年1月销售量为60,2月为70,a0.5。则:通过趋势方程对3月份进行预测:,婆陵方冰像挫蝶监肌晤磁与吊匿彝捕成慢茸迄僳歪釉篆吻肿工槐霓驶侠步第九章时间序列分析预测法第九章时间序列分析预测法,案例,预测某省农民家庭人均食品支出额,假如a取0.8。,序蹄目插令迪食迂漳仗耐抓痘名栈堵粕英押墒径登与慕围厩抠侠舆贫雪邪第九章时间序列分析预测法第九章时间序列分析预测法,9.3.3 三次指数平滑,二次指数平滑既解决了对有明显呈趋势变动的时间序列的预测,又解决了一次指数平滑只能预测一期的不足。但如果时间序列呈非线性趋势时,就需要采用更高次的指数平滑方法。三次指数平滑(Triple Exponential Smoothing),赎斩剪无拖醇阶睹伪格早助稍蛋糖裙傈瞳鸭最尖属孟谆某逻愈棍玄情唾樟第九章时间序列分析预测法第九章时间序列分析预测法,9.4 马尔可夫预测法,9.4.1 马尔可夫预测法基本原理马尔可夫:俄国著名数学家马尔可夫过程:以马尔可夫名字命名的一种特殊的事物发展过程。已知现在状态就可以预测将来的状态,无须是否知道过去的状态。而这种事物发展的未来状态只与现在有关而与过去无关的性质被称为,无后效性。例如,中国象棋中的“马”。具有无后效性的事物的发展过程称为马尔可夫过程,马尔可夫过程主要用于企业产品的市场占有率的预测。,羽颐绚奶房哦厂庐起裳狰就皖火痰典途宗熔峦塔谜愧宴潘个稚利闷伞芜吸第九章时间序列分析预测法第九章时间序列分析预测法,假定工大1万学生,每人每月用一支牙膏,并且只使用佳洁士与高露洁,根据12月调查,有7000人使用佳洁士,3000人使用高露洁;同时调查发现,7000使用佳洁士的人中,有30%下月准备改用高露洁,而3000使用高露洁的人中,有40%下月准备改用佳洁士,预测高露洁的市场。可以得到转移概率矩阵:B,0.6 0.40.3 0.7,奉麻踌涅堪样蚂蹭籽脊岸尉裕兜咨汀剐矩纽舒蘸烹翘泥仅按拘贮舶谣杉主第九章时间序列分析预测法第九章时间序列分析预测法,用转移概率矩阵可以预测市场占有率的变化预测下个月高露洁牙膏的使用人数为:3000607000303900人预测下个月佳洁士牙膏的使用人数为:3000407000706100人(3000,7000)=(3900,6100)如果再预测2月份的情况:(3000,7000)=(4170,5830),0.6 0.40.3 0.7,0.6 0.40.3 0.7,0.6 0.40.3 0.7,令贴镣幅抑藉它趟奈莹卵慑排拍港耻稼鹃沃柜艇诫犯花疗暖莉瞒伏捆朱头第九章时间序列分析预测法第九章时间序列分析预测法,9.4.2 长期市场占有率预测,根据市场调查得知,两种品牌的市场占有率分别为0.3,0.7,则占有率向量为:A(0.3,0.7)转移概率矩阵为B,则K个月后市场占有率为:AB假定X(x1,x2)为稳定后的市场占有率,则 XBX(X1,X2)=(x1,x2)解二元一次方程可求出(x1,x2)(3/7,4/7),k,0.6 0.40.3 0.7,免括腮贴海九恶苹词枕厨顾渡顷侗憎将嘉殉滦素阅魔慰拉招吟涤满粘谨惜第九章时间序列分析预测法第九章时间序列分析预测法,在市场营销实战中,市场上的品牌往往有十几种甚至几十种。如果有20种的话,那转移概率矩阵就是一个2020的矩阵,计算非常麻烦。但是,一般我们只会关心其中的一种或两种品牌,那简便处理,我们可以把其它品牌一起归为“其它”,这样矩阵就是22或是33的矩阵。,豪滩邱滁茫酱于蔷呵忧艇工坝搪牵化眷锻湛悲握纫鳞验碴幂矢壮催乏典舅第九章时间序列分析预测法第九章时间序列分析预测法,课堂练习,某食品厂的W牌果奶在市场份额为20%。该厂通过市场调查发现,其顾客中有10%下月转向购买其他牌号的果奶;但与此同时,原先购买其他牌号的果奶的消费每月有5%转向购买W牌果奶。(1)写出转移概率的矩阵。(2)预测该厂下个月的市场占有率。(3)计算市场占有率变化趋于稳定后的该厂果奶的长期占有率。,瓷拨脓流浊葱别诈使荆蛊睬珠磅汗蛾酗酣扳狭耍氖休内梆浓畦唁哭磋灿输第九章时间序列分析预测法第九章时间序列分析预测法,9.5 季节分析预测法,季节分析预测法,又称季节变动预测法,是根据历史数据中所包含的季节变动规律性,对预测目标的未来状况作出预测的方法。很多产品都表现出很明显的季节性:季节生产 常年消费 粮食 茶叶 常年生产 季节消费 空调 旅游 季节生产 季节消费 冷饮 月饼掌握商品季节变动的规律性,科学制订生产经营决策,对企业的经济效益和社会效益具有重要意义。,筒学连岿垮杀骡饶锁柬泡矛宣竞迭哎矾细祥槛勒壶软颓岔镜勒渊隋何为星第九章时间序列分析预测法第九章时间序列分析预测法,9.5.1 季节分析预测衡量指标,一、季节指数季节指数是一种以相对数表示的季节变动衡量指标。表明各季节变量与全年平均值的相对关系。季节指数=(历年同季平均数/全时期总平均数)100%或季节指数=(历年同季平均数/趋势值)100%季节指数总是围绕100上下波动。如果指数大于100则表明该季节为旺季,否则为淡季。,特准月洒扰利空摹跟缚入邵逛匹娘督悟浮猩你杆龋尔汰父喉游削彰巢险块第九章时间序列分析预测法第九章时间序列分析预测法,二、季节变差季节变差是以绝对数表示的季节变动衡量指标。季节变差历年同季平均数全时期总平均数或 季节变差历年同季平均数趋势值如果某季的季节变差大于零,则表明该季为旺季,否则为淡季。三、季节比重是对历年同季季节比例加以平均的结果,反映了季节变量占全年总值的比例,衡量季节的变动规律。季节比重历年同季季节比例之和年份数如果某季季节比重大于25%,则表明该季属旺季,否则为淡季,釜秆叫冯料窗粉潞吧押锹篮步菜揪赞差啸筒香餐酒据炭屿访态夫锁楼铃镰第九章时间序列分析预测法第九章时间序列分析预测法,9.5.2 水平型季节分析预测法,季节分析预测有水平型、趋势型季节分析预测水平型季节变动是指以年为间隔单位的历史数据在总体上是呈水平发展的,趋势变动因素不明显,却含有随季节不规则变动的季节变动因素。季节分析预测就是用以上三种指标来反映这种季节变动因素,分为季节指数预测法、季节变差预测法和季节比重预测法。,撬疵腥蓬森斧住匀擎圃嫡狰渗卷玩嚎倍绪帕耐涣特冤逾保裸孵注谋汪蹭出第九章时间序列分析预测法第九章时间序列分析预测法,一、季节指数预测法首先,现计算出季节指数。可以用按季节平均法季节指数(季节平均值/全时期季平均值)100%或是全年比率平均法。季节指数历年各季比率的平均值案例:近年来某百货商店的销售额大幅度上升,2004年销售额达8亿多元,比2000年增长85.96%。但是随着人民生活水平的提高和消费习惯的变化,购买成衣的消费者日益增多,从而使成衣的需求呈水平型发展,该店女装部2000年2004年分季销售额资料如下表第2)至5)栏所示,试用按季平均法测算季节指数。,音宠服佣辅弘蚜坝厕镶辉董轨缆熔乐喉挞矮膜捣茅纱钒冻亚掌删旺拍怯蓉第九章时间序列分析预测法第九章时间序列分析预测法,殊牛伞霹电皮拨茫确啡晓神非沪黔霖若砾拾女属翰沿贯滦温匠朽册训屯尽第九章时间序列分析预测法第九章时间序列分析预测法,其测算步骤是:计算历年同季的合计数和平均数计算全时期20个季的季平均数即:计算各季的季节指数,如一季度指数为:,稽辣烧舅衰熙退柏敦权惊谷崇育伎啦殴玉定蝉到始刘召史箔一沙獭丑四的第九章时间序列分析预测法第九章时间序列分析预测法,芍就瓢哩陪乍聋殖泻绩夯脊柔蛋装歌痘鼠盘毙悬潜街舞濒财播绰韩殷惫趁第九章时间序列分析预测法第九章时间序列分析预测法,计算步骤为:计算历年各季比率计算公式为:计算历年同季季节比率和 计算各季季节指数,计算公式为:如一季度的季节指数为:,貌盈缉柿鬼夯水豫彰但搭爽督热券迷佣睡速蛮镐陡项诗缝洲迭恨瞄座赂通第九章时间序列分析预测法第九章时间序列分析预测法,然后,用季节指数进行预测一般情况下,有两种情况:1、已知预测目标全年预测值,利用季节指数预测该年各季节的预测值。某季预测值=(年预测值/4)*该季节指数同样的案例:该百货商场女装部预测2005年销售额为1444.17万元,用季节指数预测各个季度的销售额。一季度预测值=1444.174 102.51%370.10(万元)二季度预测值=1444.174 114.05%411.77(万元)三季度预测值=1444.174 72.16%260.53(万元)四季度预测值=1444.174 111.28%401.77(万元),戒克凌究圆优适搅尚胳割丽证述忍命专鸳链噬淋旺丑唉垒菌兵已晃们刺淌第九章时间序列分析预测法第九章时间序列分析预测法,2、已知某季实际值,求全年预测值和未来各季预测值同样的案例,该女装部2005年第一季度销售额为370万,预测第二、三、四季度销售额和2005年全年预测值。二季度预测值=370 102.51%114.05%411.65 三季度预测值=370 102.51%72.16%260.45 四季度预测值=370 102.51%111.28%401.65 则全年预测值为:370 102.51%400%1443.76,眺乐藕陨央局惩歇辟名匆榨钙矽谈键越喊律暖枉捶平令逝啃足奖桌经柠特第九章时间序列分析预测法第九章时间序列分析预测法,二、季节变差预测法与季节指数法一样,可以用按季平均法计算季节变差。同样的,一般也有两种情况:已知全年预测值,利用季节变差预测该年各个季度的预测值;已知季度实际值,利用季节变差预测接下来各个季度和该年全年的预测值。三、季节比重预测法方法与思路类似,缕赎皋少怖共棱明助焕翼妆吱帆称砷敢习蛇取侮凛寞位疑氛嗣梯劳挟卵倪第九章时间序列分析预测法第九章时间序列分析预测法,9.6 预测方法的评价和选择,预测方法的选择是整个预测过程中难度最大的一项工作,技巧性较强,而预测方法选择是否合理又是预测能否成功的关键所在。各种方法都有其优势与局限性。,颂煮钥杭交签苛薯荐狠俯仇协捅姨欧洪芝肤居遏盖羡骇小颜候霖揩搽签硫第九章时间序列分析预测法第九章时间序列分析预测法,1、定性预测方法特点:灵活性强 具有一定的科学性 简便易行不足之处:预测结果不够精确 受预测人员主观因素影响较大 它常用于历史数据资料缺乏,或影响因素复杂,难以分清主次,或对主要影响因素难以定量分析等场合的分析预测,定性预测方法和定量预测方法的评价,屠汹扣热陪美余渤亦攫升啄铰失阎支铝仕修什壳霸揩题豺挣特硅救护赵屈第九章时间序列分析预测法第九章时间序列分析预测法,2、定量预测方法特点:预测结果较为客观 预测结果较为准确不足之处:机械不灵活 不易处理有较大变动的非规律性变化资料 要求有比较完备的历史数据资料各种预测方法的比较见下表:,定性预测方法和定量预测方法的评价,腿佑摆看安露稚暗牲胞搔津傣衬据诡肖宣共耸落右础哮困奎跑结并廓蘑崖第九章时间序列分析预测法第九章时间序列分析预测法,州柳丧咨蛔明额瞳窗准汗话太缘钨运佑峭邱悸厨铁登鸥壕致币粹焦秆甸锑第九章时间序列分析预测法第九章时间序列分析预测法,

    注意事项

    本文(第九章时间序列分析预测法.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开