欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第9章列联分析.ppt

    • 资源ID:5135981       资源大小:339.52KB        全文页数:32页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第9章列联分析.ppt

    9 列联分析,9.1 分类数据与列联表 9.2 c2 检验9.3 列联表中的相关测量9.4 列联分析中应注意的问题,分类数据,分类变量的结果表现为类别例如:性别(男,女)各类别用符号或数字代码来测度使用分类或顺序尺度你吸烟吗?1.是;2.否你赞成还是反对这一改革方案?1.赞成;2.反对对分类数据的描述和分析通常使用列联表可使用检验,9.1 分类数据与列联表,9.1.1 分类数据9.1.2 列联表的构造9.1.3 列联表的分布,列联表(contingency table),由两个以上的变量交叉分类的频数分布表行变量的类别用 r 表示,ri 表示第 i 个类别列变量的类别用 c 表示,cj 表示第 j 个类别每种组合的观察频数用 fij 表示表中列出了行变量和列变量的所有可能的组合,所以称为列联表一个 r 行 c 列的列联表称为 r c 列联表,列联表的结构(2 2 列联表),列(cj),行(ri),列联表的结构(r c 列联表的一般表示),列(cj),行(ri),fij 表示第 i 行第 j 列的观察频数,列联表(例题分析),【例】一个集团公司在四个不同的地区设有分公司,现该集团公司欲进行一项改革,此项改革可能涉及到各分公司的利益,故采用抽样调查方式,从四个分公司共抽取420个样本单位(人),了解职工对此项改革的看法,调查结果如下表,观察值的分布,边缘分布行边缘分布行观察值的合计数的分布例如,赞成改革方案的共有279人,反对改革方案的141人列边缘分布列观察值的合计数的分布例如,四个分公司接受调查的人数分别为100人,120人,90人,110人条件分布与条件频数变量 X 条件下变量 Y 的分布,或在变量 Y 条件下变量 X 的分布每个具体的观察值称为条件频数,观察值的分布(图示),行边缘分布,列边缘分布,条件频数,百分比分布(概念要点),条件频数反映了数据的分布,但不适合对比为在相同的基数上进行比较,可以计算相应的百分比,称为百分比分布行百分比:行的每一个观察频数除以相应的行合计数(fij/ri)列百分比:列的每一个观察频数除以相应的列合计数(fij/cj)总百分比:每一个观察值除以观察值的总个数(fij/n),百分比分布(图示),总百分比,列百分比,行百分比,期望频数的分布,假定行变量和列变量是独立的一个实际频数 fij 的期望频数 eij,是总频数的个数 n 乘以该实际频数 fij 落入第 i 行 和第j列的概率,即,期望频数的分布(例题分析),由于观察频数的总数为n,所以f11 的期望频数 e11 应为,例如,第1行和第1列的实际频数为 f11,它落在第1行的概率估计值为该行的频数之和r1除以总频数的个数 n,即:r1/n;它落在第1列的概率的估计值为该列的频数之和c1除以总频数的个数 n,即:c1/n。根据概率的乘法公式,该频数落在第1行和第1列的概率应为,期望频数的分布(例题分析),9.2 c2检验,9.2.1 统计量9.2.2 拟合优度检验,统计量,用于检验列联表中变量间拟合优度和独立性用于测定两个分类变量之间的相关程度 计算公式为,统计量(例题分析),合计:3.0319,品质数据的假设检验,拟合优度检验(goodness of fit test),检验多个比例是否相等检验的步骤提出假设H0:1=2=j;H1:1,2,j 不全相等 计算检验的统计量,进行决策 根据显著性水平和自由度(r-1)(c-1)查出临界值2 若22,拒绝H0;若22,接受H0,拟合优度检验(例题分析),H0:1=2=3=4 H1:1,2,3,4 不全相等=0.1df=(2-1)(4-1)=3临界值(s):,统计量:,在=0.1的水平上不能拒绝H0,可以认为四个分公司对改革方案的赞成比例是一致的,决策:,结论:,拟合优度检验(例题分析),【例】为了提高市场占有率,A公司和B公司同时开展了广告宣传。在广告宣传战之前,A公司的市场占有率为45%,B公司的市场占有率为40%,其他公司的市场占有率为15%。为了了解广告战之后A、B和其他公司的市场占有率是否发生变化,随机抽取了200名消费者,其中102人表示准备购买A公司产品,82人表示准备购买B公司产品,另外16人表示准备购买其他公司产品。检验广告战前后各公司的市场占有率是否发生了变化(0.05),拟合优度检验(例题分析),H0:1=0.45 2=0.4 3=0.15 H1:原假设中至少有一个不成立=0.1df=(2-1)(3-1)=2临界值(s):,统计量:,在=0.05的水平上拒绝H0,可以认为广告后各公司产品市场占有率发生显著变化,决策:,结论:,9.3 列联表中的相关测量,9.3.1 相关系数9.3.2 列联相关系数9.3.3 V 相关系数,列联表中的相关测量,品质相关对品质数据(分类和顺序数据)之间相关程度的测度列联表变量的相关属于品质相关列联表相关测量的统计量主要有 相关系数列联相关系数V 相关系数,相关系数(correlation coefficient),测度22列联表中数据相关程度对于22 列联表,系数的值在01之间 相关系数计算公式为,相关系数(原理分析),一个简化的 22 列联表,相关系数(原理分析),列联表中每个单元格的期望频数分别为,将各期望频数代入 的计算公式得,相关系数(原理分析),将入 相关系数的计算公式得,ad 等于 bc,=0,表明变量X 与 Y 之间独立若 b=0,c=0,或a=0,d=0,意味着各观察频数全部落在对角线上,此时|=1,表明变量X 与 Y 之间完全相关,列联表中变量的位置可以互换,的符号没有实际意义,故取绝对值即可,列联相关系数(coefficient of contingency),用于测度大于22列联表中数据的相关程度计算公式为,C 的取值范围是 0C1C=0表明列联表中的两个变量独立C 的数值大小取决于列联表的行数和列数,并随行数和列数的增大而增大根据不同行和列的列联表计算的列联系数不便于比较,列联表中的相关测量(例题分析),【例】一种原料来自三个不同地区,原料质量被分成三个不同等级。从这批原料中随机抽取500件进行检验,结果如下表。分别计算系数、C系数和V系数,并分析相关程度,列联表中的相关测量(例题分析),解:已知n=500,19.82,列联表为33,结论:三个系数均不高,表明产地和原料等级之 间的相关程度不高,结 束,

    注意事项

    本文(第9章列联分析.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开