欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    电磁场理论基础课件ap.ppt

    • 资源ID:5116744       资源大小:2.18MB        全文页数:61页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电磁场理论基础课件ap.ppt

    主要内容:宏观电磁现象的实验定律真空中的Maxwell方程组介质的极化和磁化介质中的Maxwell方程组电磁场的边界条件,第二章 宏观电磁场的基本规律,2.1 电荷与电流,1 电荷守恒定律 宏观实验表明:一个孤立系统的电荷总量是保持不变的,即在任何时刻,系统中的正电荷与负电荷的代数和保持不变。称之为电荷守恒定律。电荷守恒定律表明,如果孤立系统中某处在一个物理过程中产生(或消灭)了某种符号的电荷,那么必有相等量的异号电荷伴随产生(或消灭);如果孤立系统中总的电荷量增加(或减小),必有等量的电荷进入(或离开)该孤立系统。,单位时间内,通过界面进入V内部的电荷量为:该电荷量等于V内单位时间内的电荷增加量,即:,V,s,n,J,2.1 电荷与电流,孤立系统,2.2 Coulomb定律与静电场,1 Coulomb定律 真空中任意两个静止 点电荷q1 和q2之间 作用力的大小与两电 荷的电荷量成正比,与两电荷距离的平方 成反比;方向沿q1 和 q2连线方向,同性电 荷相互排斥,异性电 荷相互吸引。,实验还证明,真空中多 个点电荷构成的电荷体 系,两两间的作用力,不受其它电荷存在与否 的影响。多个电荷体系 中某个电荷受到的作用 力是其余电荷与该电荷 单独存在时作用力之矢 量代数和,满足线性叠 加原理。,2.2 Coulomb定律与静电场,qi,2 电场强度 实验证明,任何电荷在其所在空间激发出对置于其中的电荷有力作用的物理量,称为电场。由静止电荷激发的电场称为静电 场。人们正是通过对电磁中电荷受力的特 性认识和研究电场的。电荷之间的作用力 是通过电场来传递的。因此电场对电荷的 作用力可以用于定义电场。,2.2 Coulomb定律与静电场,空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力:根据上述定义很容易得到真空中静止点电荷q激发的电场为:,2.2 Coulomb定律与静电场,如果电荷是连续分布,密度为。它在空间任意一点产生的电场为:,2.2 Coulomb定律与静电场,小体积元中的电荷产生的电场,3 静电场的性质 性质1 静电场是有散矢量场,电荷是静电场的通量源。利用Gauss定理得到 称为静电场的Gauss定律。静电场的Gauss定律表明静电场的力线发源于正电荷,终止于负电荷。在没有电荷的空间中,静电场的力线是连续的。,2.2 Coulomb定律与静电场,2.2 Coulomb定律与静电场,性质2 静电场是无旋场,2.2 Coulomb定律与静电场,由于标量场的梯度是无旋场,所以静电场又可以表示为某个标量场的梯度。,,,1 Ampere定律 Ampere对电流的磁效 应进行了大量的实验研 究,在 18211825年 之间,设 计 并完成了 四个关于电流相互作用 的精巧实验,得到了电 流相互作用力公式,称 为Ampere定律。,2.3 Ampere定律与恒定电流的磁场,2.3 Ampere定律与恒定电流的磁场,I0d l,实验进一步证明,电流体对于置其中的电流元 有力的作用,电流元 受到的作用力是电流体中所有电流与电流元 作用的叠加。,I0d l,I0d l,I0d l,2 BiotSavart 定律与磁感应强度 实验证明,任一恒定电流元Idl在其周围空 间激发出对另一恒定电流元(或磁铁)具 有力作用的物理量,称为磁场。恒定电流 元之间的相互作用力是通过磁场传递的,对恒定电流有力的作用是磁场的基本特性,2.3 Ampere定律与恒定电流的磁场,区域V上的磁感应强度的数值为检验电流元受到作用力最大值与检验电流元比值的极限磁感应强度的方向垂直电流元与电流元受力方向所构成的平面,三者满足右手螺旋法则。,2.3 Ampere定律与恒定电流的磁场,dF,I0 dl,B,2.3 Ampere定律与恒定电流的磁场,3 磁矢位 如果记 磁感应强度矢量可表示为:称为磁矢位。,4 磁场的基本性质(1)恒定电流的磁场是无散场,即:所以 这说明磁场力线是闭合的,没有起点 也没有终点。,2.3 Ampere定律与恒定电流的磁场,(2)恒定电流的磁场是有旋场,电流是磁场的 涡旋源。,2.3 Ampere定律与恒定电流的磁场,5 磁场对运动带电粒子的作用力 电荷运动形成电流,磁场对电流的作用力实际上是对运动电荷的作用力。从而得到 称为称为Lorentz力。磁场对运动带电粒子的作 用力与粒子运动的方向垂直,这说明磁场对带电 粒子不做功,它只改变粒子的运动方向,而不改 变粒子运动速度的大小。,2.3 Ampere定律与恒定电流的磁场,2.4 真空中的Maxwell方程组,1 Faraday电磁感应定律 Faraday从1820年开始探索 磁场产生电场的可能性,经 过11年的努力,终于在1831 年实验发现,当穿过闭合线 圈的磁通量发生变化时,闭 合导线中有感应电流产生,感应电流的方向总是以自己 产生的磁通量对抗原来磁通 量的改变。,进一步的实验还证明,只要闭合曲线内磁通 量发生变化,感应的电场不仅存在于导体回 路上,也同样存在于非导体回路上,并满足 如下定量关系式:,曲面磁通量改变率,回路电动势,2.4 真空中的Maxwell方程组,Faraday电磁感应实验定律表明:变化的磁场可以产生感应电场,该电场与静电场都对电荷有力的作用,所不同的是感应电场沿闭合回路的积分不为零,具有涡旋场的性质,变化的磁场是其旋涡源。因此静态场方程必须加以修正,才能正确描述更为一般的电磁现象。,2.4 真空中的Maxwell方程组,位移电流概念 将 BiotSavart定律应 用到如图所表示的环 路L,同样以L为边界 的两个不同曲面S1和 S2,其旋涡源的通量 有两个不同的结果:,2.4 真空中的Maxwell方程组,存在变化电场,Maxwell认为,在时变电磁场问题中,电荷密度 一般是时间的函数,它对于时间的微分不一定为零,即:而另一方面,出现了相互矛盾的结果。,2.4 真空中的Maxwell方程组,(电荷守恒定律),相互矛盾的结果,在Maxwell所处的时代,磁力线的闭合特性被实验所证明,因此他认为是正确的。如果要使,2.4 真空中的Maxwell方程组,与,一致,必须对电流 J 进行改造和推广。,Maxwell认为电流由两个部分组成,其中一部分为传导电流,另一部分被他称之为位移电流,即:为了获得位移电流表达式,Maxwell认为静电场的Gauss定律和电荷守恒定律是实验的总结,应予以保留。利用这两个定律,他对电流的形式进行了如下的推广:,2.4 真空中的Maxwell方程组,推广的位移电流表达式有多种可能的选择。Maxwell选定这一表达式首先是Faraday电磁感应实验定律证明了变化的磁场能够激发电场,那么变化的电场能够激发磁场,是人们把电磁场作为一个相互联系物理现象的合理假设。此外这一假设形式最简单,解决了恒定情况下Biot-Savart定律在非恒定情况下的矛盾。同时又保证了电荷守恒定律和Gauss定律的成立。当然其正确性仍然依赖于试验的验证。,2.4 真空中的Maxwell方程组,3 真空中的Maxwell方程组 电场的Gauss定律:Maxwell认为电场Gauss定律对时变电磁场也应成 立。直接推广到一般情形,即:磁场Gauss定律:Maxwell认为恒定电流磁场的Gauss定律可以直接 推广到一般情形,即:,Faraday电磁感应定律:Maxwell认为变化的磁场产生感应电场,不仅存在 于导体构成的环路,也存在于任何物质空间的任意点。他对Faraday电磁感应定律的内涵进行了推 广,但保留数学表达式,即:广义Biot-Savart定律:Maxwell引入位移电流,对恒定电流情况下的Biot-Savart定律进行了修正,即:,上述四组方程称为真空中的Maxwell方程组,它描述了真空中宏观电磁场与源、电场与磁场的相互作用和联系的规律。上述四个方程并非都是独立的,只有两个是独立的。,Maxwell建立了宏观电磁场现象的统一理论,奠定 了无线电技术理论基础。在时变电磁场中,变化 的磁场激发旋涡电场;而变化的电场同样可以激 发涡旋磁场。电场与磁场之间的相互激发可以脱 离电荷和电流而发生。电场与磁场的相互联系,相互激发,时间上周而复始,空间上交链重复,这一过程预示着波动是电磁场的基本运动形态。他的这一预言在Maxwell去世后(1879年)不到10 年的时间内,由德国科学家Hertz通过实验证实。从而证明了Maxwell的假设和推广的正确性。,电磁波,1 介质的基本概念 介质是物质的一种统称,物质由原子或原子团、分 子或分子团组成,而原子或分子内部有带正电的原 子核电的原子核和带负电的电子。一方面,介质内 部大量带电粒子的不规则的运动,在微观尺度上产 生变化电磁场,这些随机的电磁场宏观上相互抵 消,介质呈中性。另一方面,当介质在外部宏观电 磁场作用之下,介质中带电粒子产生宏观的规则运 动或排列,形成宏观上的电荷堆集或定向运动,从 而产生宏观上附加的电磁场。,2.5介质中的Maxwell方程,在外场中,介质中带电粒子产生位移或附加的运动,宏观上主要表现出如下三种形态:介质的极化(Polarization)介质中分子和原子的正负电荷在外加电场力 的作用下发生小的位移,形成定向排列的电 偶极矩;或原子、分子固有电偶极矩不规则 的分布,在外场作用下形成规则排列,2.5介质中的Maxwell方程,介质的磁化(Magnetization)介质中分子或原子内的电子运动形成分子电流,微 观上形成不规则分布的磁偶极矩。在外磁场力作用 下,磁偶极矩定向排列,形成宏观上的磁偶极矩,没有外加磁场,传导电流(Conduction current)介质中可自由移动的带电粒子,在外场力作用下,导致带电粒子的定向运动,形成电流,2.5介质中的Maxwell方程,2 极化强度概念 极化强度矢量P,定义 为单位体积中分子或原 子团的电偶极矩的叠加,2.5介质中的Maxwell方程,pi=p,P=n p,分子或者原子团的电偶极矩的大小和方向与 外加电场强度的大小和方向有关,所以极化 强度P是外加电场强度的函数,其关系一般 比较复杂。但对于线性均匀介质,P与外加 电场成正比。另一方面,空间不同点处分子 或者原子团构成不同,极化强度也不同,P 还可能是空间的函数。如果外加电磁场是时 变的,极化强度P还可能是时间的函数。,由于极化,分子或原子的正负电荷发生位移,体积元内一部分电荷因极化而迁移到的外部,同时外部也有电荷迁移到体积元内部。因此体积元内部有可能出现净余的电荷。,(2)不均匀介质或由多种不同结构 物质混合而成的介质,可出现 极化电荷。,(1)线性均匀介质中,极化迁出的 电荷与迁入的电荷相等,不出 现极化电荷分布。,(3)在两种不同均匀介质交界面上 的一个很薄的层内,由于两种 物质的极化强度不同,存在极 化面电荷分布。,对交界面上的一个薄层,取如图所示扁圆盒,考虑扁圆盒的厚度很小,求得极化面电荷密度为:,2.5介质中的Maxwell方程,如果外加电磁场是随时间变化的,极化强度矢量 P 和极化电荷也随时间变化,并在一定的范围内发生运动(其物理实质是正负电荷位移的距离量随时间变化),从而形成极化电流,它们同样满足电荷守恒定律。应用电荷守恒定律,得到极化电流的表达式为:,极化电流与传导电流的区别在于:前者是由带电粒子在微小区域内的运动,后者可在宏观区域上运动,3 电位移矢量、介质中的Gauss定律 无论是自由电荷,还是极化电荷,它们都激发电 场,服从同样的Coulomb定律和Gauss定律。介质 的极化过程包括两个方面:一方面外加电场的作 用使介质极化,产生极化电荷;另一方面,极化 电荷反过来激发电场,两者相互制约,并达到平 衡状态。因此介质中的电场应该是外加电场和极 化电荷产生的电场的叠加。应用Gauss定理得到:,自由电荷和极化电荷共同激发的结果,由于束缚电荷密度是很难通过直接测量获得,将束缚电荷体密度表达式代入上式,引入辅助 的电位移矢量 电场的Gauss定律变为:,它表示任意闭合曲面电位移矢量 D 的通量等于该曲面包含自由电荷的代数和,介质中的电场的最终求解必须知道电场E和电位移矢量D之间的关系(物质的本构关系)。这种关系有两种途径可以获得:1)直接测量出P 和 E之间的关系 2)用理论方法计算P 和E之间的关系对于线性均匀各向同性介质,极化强度P 和电场强度E 有简单的线性关系,介质有多种不同的分类方法,如:均匀和非均匀介质 各向同性和各向异性介质 时变和时不变介质 线性和非线性介质 确定性和随机介质最简单的线性均匀各向同性介质,分二种情况:线性均匀各向同性时不变介质;线性均匀各向同性时变介质(色散介质),为了描述介质在外加磁场作用下磁化程度,引入磁化强度M,定义为单位体积中的磁偶极矩的矢量和:,5.磁化强度与磁化电流密度,mi=m,M=n m,磁化的宏观效应,在与外加磁感应强度矢量B 垂直的横截面上,存在数量巨大的分子电流环。如果这些分子电流大小相等,在相邻电流环的交界线上因电流的方向相反,大小相等,不出现剩余的电流。如果这些分子电流大小不同,在相邻环的交界线上尽管电流的方向相反,但大小不等,将出现剩余的电流,这种因磁化在介质空间出现的电流为磁化电流。在选取横截面的边界线上,总存在磁化电流。,IM,其中n为单位体积中分子电流的数量,在介质交界面上的一个薄的层内,存在面磁化电流分布,介质中的Biot-Savart定律、磁场强度 外加电磁场使介质发生极化和磁化,极化和磁化导致磁化和极化电流。磁化和极化电流同样也激发磁感应强度,两种相互作用达到平衡,介质中的磁感应强度B应是所有电流源激励的结果:分别是传导、位移、极化和 磁化电流,引入辅助矢量H,称为磁场强度,定义如下:对于线性均匀各向同性介质,磁化强度与磁场之间存在简单的线性关系:介质中的广义Biot-Savart定律为:,7 传导电流 存在可以自由移动带电粒子的介质称为导电介质。在外场作用下,导电介质将形成定向移动电流。导 电介质中原子核或晶格在空间形成固定点阵,核外 自由电子除无规则运动外,外场作用力将使电子产 生定向运动。运动的电子经常与原子核或晶格点阵 发生碰撞。碰撞过程使电子改变运动方向,并将部 分能量转嫁给原子核或晶格,转变为热效应,使外 场作用下的电子定向运动速度与外加电场强度成正 比,此即ohm定律,其表达式为:,晶格,带电粒子,8 介质中Maxwell方程组 在介质中,真空中的电场 Gauss定律推广为介质中的 Gauss定律;磁场Gauss定律和Faraday电磁感应定律保持不变,真空中的Biot-Savart定律推广为介质中的 Biot-Savart 定律。因此介质中的Maxwell方程组如下:,9 介质中Maxwell方程的完备性 数学上讲,给定的方程和条件能唯一求解的方 程称为完备的;反之,是不完备的。在给定电 荷和电流分布的情况下,真空中Maxwell方程是 完备的。介质中的Maxwell方程组是不完备的。必须附加其它条件才能对方程求解。介质中电 场、磁场、电位移矢量和磁感应强度之间通过 介质的电磁特性建立起联系,并不完全独立。称联系电磁场量与介质之间关系的方程为介质 的本构方程。,2.6 电磁场的边界条件,1 边界上的电磁场问题 实际电磁场问题都是在一定的空间和时间 范围内发生的,它有起始状态(静态电磁 场例外)和边界状态。即使是无界空间中 的电磁场问题,该无界空间也可能是由多 种不同介质组成的,不同介质的交界面和 无穷远界面上电磁场构成了边界条件。,所谓边界条件,即电磁场场在边界上服从的条件,也可以理解为界面两侧相邻点在无限趋近时所要满足的约束条件。边界条件是完整的表示需要导出界面两侧相邻点电磁场矢量所要满足的约束关系。这一关系可以通过曲面在该点的切向和法向分量满足的约束关系给出。由于在分界面两侧介质的特性参数发生突变,场在界面两侧也发生突变。所以Maxwell方程组的微分形式在分界面两侧失去意义(因为微分方程要求场量连续可微)。而积分方程则不要求电磁场量连续,从积分形式的麦克斯韦方程组出发,导出电磁场的边界条件。,2 电磁场量的法向边界条件 把积分Maxwell方程组应用到图所表示的两媒质交界面的扁平圆盘。根据Gauss定理,让h0,场在扁平圆盘壁上的通量为零,得到:,3 电磁场量的切向边界条件 在介质分界面两侧,选取如图所示的积环路,应用 电磁感应定律、推广的Biot-Savart定律积分公式,边界条件一般表达式,理想介质边界条件表达式,一侧为导的边界条件表达式,介质1,介质2,

    注意事项

    本文(电磁场理论基础课件ap.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开