欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第八部分点的一般运动与刚体的基本运动.ppt

    • 资源ID:5089132       资源大小:823.52KB        全文页数:18页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第八部分点的一般运动与刚体的基本运动.ppt

    第八章 点的一般运动与刚体的基本运动,第一节 运动分析概述 第二节 描述点的一般运动的方法第三节 刚体的基本运动 第四节 问题讨论与说明,第一节 运动分析概述,一、运动分析的内容,运动分析是研究物体在空间位置随时间变化的几何性质,提出对物体进行运动分析的一般方法。,1、对于既定的运动,选择合适的参量进行数学描述,即列写运动方程。,2、研究表征运动几何性质的基本物理量,如速度、加速度、角速度与角加速度等。,3、研究运动分解与合成的规律。,二、运动分析的目的、意义,一是作为动力学的基础;二是作为机械设计和各专业专业课基础,三、运动分析的模型及基本形式,(一)运动分析的基本模型,点:不计几何形状和尺寸的理想化物体。,刚体:具有确切的形状和大小,并且在外力作用永不变形的物体。,在研究空间站的轨道运动时,可以将其简化为点去研究。在研究空间站的姿态运动时,必需考虑它的大小及形状,即必需作为具有一定大小和形状的刚体研究。,(二)运动分析基本形式,1、点运动形式,分为直线运动和曲线运动,2、刚体的运动形式,平移:刚体运动中,其上任意直线永远平行于自己的初始位移。(如沿直线运动的活塞B),定轴转动:刚体运动中,其上或外延伸部分有一直线始终保持不动。(如曲柄OA绕O点连杆AB绕B点的运动),平面运动:刚体运动中,其上各点到某一固定平面的距离保持不变。(如右图OA、AB、B在OAB平面的运动),定点转动:刚体运动中,其上始终有一点永远保持不动。(例如,陀螺的运动),一般运动:刚体最一般的运动。,我们所讨论的是刚体的平移运动、定轴转动、平面运动。,四、运动学与工程运动分析,回目录,第二节 描述点的一般运动的方法,一、矢径法,设动点M在空间作曲线运动,任选一固定点O作为参考点,则点M在任一瞬时的位置可用其位置矢量,即O点到点M的矢径确定,即为点的矢量形式的运动方程,其速度为矢径对时间变化率,即,点的加速度为速度对时间的变化率,即,二、直角坐标法,设动点M在空间运动,通过固定点O 建立一直角坐标系,如图,则点M在任一瞬时间的位置可以用它的坐标(x、y、z)唯一确定。在点M 运动时,其坐标是时间t的连续函数,即得到直角坐标法描述点运动的运动方程,其速度为,将速度向三个坐标轴方向分解,得速度的三个分量为,加速度为,加速度在三个坐标轴上的分量为,三、自然法,以动点的轨迹作为曲线坐标来确定点的位置的方法称为自然法。,(一)运动方程,弧坐标随时间变化的函数,即,(二)速度,又因为,所以,即点的速度的大小是弧坐标对时间的一阶导数,方向沿轨迹的切线方向。,(三)加速度,根据加速度定义有,可证明:,加速度表达式中右端第一项表示速度方向不变,仅由于速度大小变化引起的速度变化率。它是加速度沿切线方向的一个分量,称为切向加速度,即,右端第二项表示速度大小不变,仅由于速度方向所改变的速度变化率,它是加速度沿法线方向的一个分量,称为法向加速度,即,所以,全加速度为,例 设动点 M 沿螺旋线 z=2sin4t、y=2cos4t、z=4t 运动。求在任一瞬时的速度、加速度的大小及轨迹的曲率半径。(x、y、z 的单位为 m,时间t的单位为 s),解:,已知动点 M 的直角坐标形式的运动方程,可求点 M 的速度在各坐标上的投影为,点 M 的速度大小为,点 M 的加速度在各坐标轴上的投影为,点 M 的加速度的大小为,又因为,所以,回目录,第三节 刚体的基本运动,一、刚体的平行移动,刚体在运动过程中,如果其体内任一直线始终保持与初始位置平行,这种运动称为平行移动。如右图,平台在平行双曲柄机构带动下的运动,其体内任一直线始终与原来位置平行。,运动规律,在作平动的刚体上任选两点 A、B,设其矢径分别为rA、rB,得其关系,将等式两端对时间 t 求导,因为,所以可得,再对时间 t 求导,可得,结论:刚体平动时,其上各点的轨迹完全相同,切在同一瞬时,其上各点的速度和加速度完全相同。因此,刚体作平动时,可用其形心的运动来代替刚体的运动,可以归结为点的运动研究。,二、刚体的定轴转动,刚体定轴转动时,体内或其延拓部分始终有一条直线保持不动。如右图的z轴。这一直线称为转轴。,(一)运动方程,将一平面固定在地面不动,再选一平面 与转动刚体固联在一起,平面 与刚体共同转动,所以平面 的位置可确定刚体的转动位置。所以平面 与固定平面 的夹角可以确定刚体的位置。刚体转动时转角随时间变化,是时间t的单值连续函数,故可得刚体的转动方程为,单位:rad,正负:从z 轴的正向看,沿逆时针转动为正;反之为负。,(二)角速度,转角随时间t的变化率,即角速度。是转角对时间的一阶导数,单位:rad/s,工程上有:,(三)角加速度,角速度随时间t的变化率,即角加速度。是角速度对时间的一阶导数,转角对时间的二阶导数,正负规定:与角速度方向一致时为正,刚体作加速转动;与角速度方向相反时为负,作减速转动。,(四)刚体内各点的速度与加速度,点M 的运动方程为,任一瞬时,点 M 的速度 v 的大小为,其方向沿轨迹的切线方向,即垂直与半径OM,指向与转向一致。,任一瞬时,点 M 的切向加速度为,其方向沿轨迹的切线方向,指向与转向一致。,点 M 的法向加速度为,其方向沿指向圆心。,点 M 的全加速度为,其与OM 的夹角为,例 如图搅拌机的主动轮同时带动齿轮、转动,搅杆BAC 用销钉A、B与齿轮、连接。设主动轮的转速 n=950r/min,AB=O2O3,O2A=O3B=25cm,各轮的齿数分别为Z1=20,Z2=Z3=50。求:搅拌杆上点C 的运动轨迹和速度大小。,解:,根据题意,AB=O2O3,O2A=O3B,说明:AB与O2O3相平行,搅拌杆BAC在工作过程中将始终与其初始位置平行,其运动为平动。因此搅拌杆上点 C 的轨迹和速度应与点 A 的相同。点 A 的轨迹是一半径为25cm的圆。,齿轮上的M1 点和齿轮 上点M2 的速度相等即,由于,所以,由于齿轮在啮合圆上的齿距相等,它们的齿数与半径成正比,根据上式可得,例 圆轮绕定点O转动,并在此轮缘上绕一柔软而不可伸长的绳子,绳子下端悬一物体A。设该轮的半径 R=0.2m,其转动方程为,角的单位为rad,时间t的单位为s。求:当 t=1s时,轮缘上任一点M 的速度和加速度及物体A的速度和加速度。,解:由转动方程可求圆轮在任一瞬时的角速度和角加速度,当 t=1s时,有,因此,轮缘上任一点M的速度和加速度为,M 点的全加速度及其偏角为,A点的速度和加速度分别和轮缘上点M点的速度和加速度相等,即,回目录,第四节 问题讨论与说明,一、与物理学中运动学的比较,在物理学中已有的一些特殊运动形式的基础上,建立全面、系统和比较深入的点和刚体模型的运动形式。,二、建立点的运动方程与研究点的运动几何性质,建立点的运动方程与研究点的运动几何性质,二者之间既有密切联系,又有一定的区别。,点的运动方程完全包括了点的运动几何性质。但是如果有了运动方程,不作物理上的分析,那还只停留在数学公式上,仍不能真正的了解点的运动形象。因此,所谓“点的运动分析”,包含了这两方面内容。另外,研究点的运动形象,也可以采用其它方法而不必建立运动方程。,研究点的运动几何性质的方法:在点的运动轨迹上,画出并分析几个特定瞬时位置的v、a关系。用离散的二者关系,表达连续的运动过程。,三、描述点运动方法的比较,矢径法用变矢量及其导数描述点的运动,所得结果紧凑、简明,理论上具有概括性,切与坐标系的选择无关;在分析实际力学问题时,需将变矢量及其导数转换为标量及其导数形式。直角坐标法是一种广泛应用的方法;弧坐标法应用与轨迹已知的前提下,该法在理论上将速度矢量的大小变化率和方向变化率加以“分离”,其理论意义大于实际以赢利为目的。,四、点的运动学的两类应用问题,第一类是给定运动方程(轨迹),确定速度和加速度,或者给出约束条件,确定运动方程,进而确定速度和加速度;第二类问题是已知加速度和运动初始条件,求速度和运动方程(轨迹)。,

    注意事项

    本文(第八部分点的一般运动与刚体的基本运动.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开