锚杆索设计与施工.ppt
第6章锚杆(索)设计与施工,本 章 重 点锚杆(索)的结构与分类及其应用锚杆(索)的设计与计算锚杆(索)的构造设计锚杆(索)的施工锚杆(索)的试验与观测,6.1概 述岩土锚固技术应用岩土锚固技术是把一种受拉杆件埋入地层中,以提高岩土自身的强度和自稳能力的一门工程技术;由于这种技术大大减轻结构物的自重、节约工程材料并确保工程的安全和稳定,具有显著的经济效益和社会效益,因而目前在工程中得到极其广泛的应用。岩土锚固的基本原理就是利用锚杆(索)周围地层岩土的抗剪强度来传递结构物的拉力以保持地层开挖面的自身稳定,由于锚杆锚索的使用,它可以提供作用于结构物上以承受外荷的抗力;可以使锚固地层产生压应力区并对加固地层起到加筋作用;可以增强地层的强度,改善地层的力学性能;可以使结构与地层连锁在一起,形成一种共同工作的符合体,使其能有效地承受拉力和剪力。在岩土锚固中通常将锚杆和锚索统称为锚杆。,锚杆(索)的结构与分类锚杆是一种将拉力传至稳定岩层或土层的结构体系,主要由锚头、自由段和锚固段组成,如图6.1所示。(1)锚头:锚杆外端用于锚固或锁定锚杆拉力的部件,由垫墩、垫板、锚具、保护帽和外端锚筋组成。(2)锚固段:锚杆远端将拉力传递给稳定地层的部分锚固深度和长度应按照实际情况计算获取,要求能够承受最大设计拉力。1-台座;2-锚具;3-承压板;4-支挡结构;5-钻孔;6-自由隔离层;7-钢筋;8-注浆体;Lf-自由段长度;La-锚固段长度,(3)自由段:将锚头拉力传至锚固段的中间区段,由锚拉筋、防腐构造和注浆体组成。(4)锚杆配件:为了保证锚杆受力合理、施工方便而设置的部件,如定位支架、导向帽、架线环、束线环、注浆塞等(图6。2)。1-台坐;2-锚具;3-承压板;4-支档结构;5-自由隔离层;6-钻孔;7-对中支架;8-隔离架;9-钢绞线;l0-架线环;ll-注桨体;12-导向帽;Lr-自由段;La-锚固段,按是否预先施加应力分为预应力锚杆(索)和非预应力锚杆(索):非预应力锚杆是指锚杆锚固后不施加外力,锚杆处于被动受载状态;预应力锚杆是指锚杆锚固后施加一定的外力,使锚杆处于主动受载状态。按锚固形态分为圆柱形锚杆、端部扩大型锚杆(索)和连续球型锚杆(索)。除此之外,按锚固机理还可分为有粘结锚杆、摩擦型锚杆、端头锚固型锚杆和混合型锚杆。目前在边坡加固工程中广泛采用锚钉也是一种较短的粘结型锚杆,它是通过在边坡中埋入段而密的粘结型锚杆使锚杆与坡体形成复合体系,增强边坡的稳定性;这种锚杆一般适用于土质地层和松散的岩石地层。,锚杆(索)在边坡处治中的应用采用锚杆(索)加固边坡,能够提供足够的抗滑力,并能提高潜在滑移面上的抗剪强度,有效地阻止坡体位移,这是一般支挡结构所不具备的力学作用。另外锚杆在边坡加固中通常与其他支挡结构联合使用,例如:(1)锚杆与钢筋混凝土桩联合使用,构成钢筋混凝土排桩式锚杆挡墙。排桩可以是钻孔桩、挖孔桩或劲性混凝土桩,锚杆可以是预应力或非预应力锚杆。如图6.7所示(2)锚杆与钢筋混凝土格架联合使用形成钢筋混凝土格架式锚杆挡墙,锚杆锚点设在格架结点上,锚杆可以是预应力锚杆(索)或非预应力锚杆(索)。如图6.8所示。,(3)锚杆与钢筋混凝土板肋联合使用形成钢筋混凝土板肋式锚杆挡墙,这种结构主要用于直立开挖的、类岩石边坡或土质边坡支护,一般采用自上而下的逆作法施工。如图6.9所示。(4)锚杆与钢筋混凝土板肋、锚定板联合使用形成锚定板挡墙。这种结构主要用于填方形成的直立土质边坡,如图6.10所示。,(5)锚杆与钢筋混凝土面板联合使用形成锚板支护结构,适用于岩石边坡。锚杆在边坡支护中主要承担岩石压力,限制边坡侧向位移,而面板则用于限制岩石单块塌落并保护岩体表面防止风化。锚板可根据岩石类别采用现浇板或挂网喷射混凝土层。(6)锚钉加固边坡,在边坡中埋入段而密的抗拉构件与坡体形成复合体系,增强边坡的稳定性。这种方法主要用于土质边坡和松散的岩石边坡,加固高度较小,多用于临时边坡加固,6.2锚杆(索)的设计与计算锚杆(索)设计的基本原则在计划使用锚杆的边坡工程中,应充分研究锚固工程的安全性、经济性和施工的可行性。设计前认真调查边坡工程的地质条件,并进行工程地质勘察及有关的岩土物理力学性能实验,以提供锚固工程范围类的岩土性状、抗剪强度、地下水、地震等资料。对于土质边坡还应提供土体的物理性质和物理状态指标。设计锚杆的使用寿命应不小于公路或被服务建筑物的正常使用年限,一般使用期限在两年以内的工程锚杆应按临时锚杆设计,使用期限在两年以上的锚杆应按永久性锚杆进行设计。对于永久性锚杆的锚固段不应设在有机质土、液限大于50或相对密度小于0.3的土层中;因有机质土会引起锚杆的腐蚀破坏;液限大于50的土层由于其高塑性会引起明显的徐变而导致锚固力不能长期保持恒定;相对密度小于0.3的土层松散不能提供足够的锚固力。,当对支护结构变形量容许值要求较高、或岩层边坡施工期稳定性较差、或土层锚固性能较差、或采用了钢绞线和精轧钢时,宜采用预应力锚杆。但预应力作用对支承结构的加载影响、对锚固地层的牵引作用以及相邻构筑物的不利影响应控制在安全范围之内。设计的锚杆必须达到所设计的锚固力要求,防止边坡滑动剪断锚杆,锚杆选用的钢筋或钢绞线必须满足有关国家标准,特别是预应力钢绞线,除了满足Gl3T 522495标准外,还必须获得IS09002国际质量认证;同时必须保障钢筋或钢绞线有效防腐,以避免锈蚀导致材料强度降低。非预应力锚杆长度一般不要超过l6m,单锚设计吨位一般为l00400kN,最大设计荷载一般不超过450 kN。预应力锚杆(索)长度一般不要超过50m,单束锚索设计吨位一般为5002500kN,最大设计荷载一般不超过3000kN,预应力锚索的间距一般为410m。进行锚杆设计时,选择的材料必须进行材性试验,锚杆施工完毕后必须对锚杆进行抗拔试验,验证锚杆是否达到设计承载力的要求;同时对于公路上遇到的大型滑坡在采用预应力锚索加固后必须进行至少一年的位移监测。,锚杆(索)的设计程序锚杆(索)设计流程图如图6.11所示。,在边坡锚杆加固中要选择合理的锚杆型式,必须结合被加固边坡的具体情况,根据锚固段所处的地层类型、工程特征、锚杆承载力的大小、锚杆材料、长度、施工工艺等条件综合考虑进行选择。表6.1给出了土层、岩层中的预应力和非预应力常用锚杆类型的有关参数,可供边坡锚杆加固选型使用。,锚杆(索)锚固设计荷载的确定锚杆(索)锚杆锚固设计荷载的确定应根据边坡的推力大小和支护结构的类型综合考虑进行确定。首先应当计算边坡的推力或侧压力,然后根据支挡结构的形式计算该边坡要达到稳定需要锚固提供的支撑力。根据这个支撑力和锚杆数量、布置便可确定出锚杆(索)锚固荷载的大小,该荷载的大小作为锚筋截面计算和锚固体设计的重要依据。,锚杆(索)锚筋的设计按照设计程序,在确定出锚杆轴向设计荷载后,需要对锚杆进行结构设计,结构设计的第一步就是根据锚杆轴向设计荷载计算锚杆的锚筋截面,并选择合理的钢筋或钢绞线配置锚筋;在配置锚筋后可由锚筋的实际面积和锚筋的抗拉强度标准值计算出锚杆承载力设计值,然后方能进行锚杆体和锚固体的设计计算。(1)锚杆锚筋的截面积计算:假设锚杆轴向设计荷载为N,则可由下式初步计算出锚杆要达到设计荷载N所需的锚筋截面:(6.3)式中:Ag由N计算出的锚筋截面;k安全系数,对于临时锚杆取1.61.8对于永久性锚杆取2.22.4;fpkt锚筋(钢丝、钢绞线、钢筋)抗拉强度设计值。,(2)锚筋的选用:根据锚筋截面计算值Ag,对锚杆进行锚筋的配置,要求实际的锚筋配置截面。配筋的选材应根据锚固工程的作用、锚杆承载力、锚杆的长度、数量以及现场提供的施加应力和锁定设备等因数综合考虑。对于采用棒式锚杆,都采用钢筋做销筋。如果是普通非预应力锚杆,由于设计轴向力一般小于450kN,长度最长不超过20m因此锚筋一般选用普通、级热轧钢筋,如果是预应力锚杆可选用、级冷拉热轧钢筋或其他等级的高强精轧螺纹钢筋。钢筋的直径一般选用232。对于长度较长、锚固力较大的预应力锚杆应优先选用钢绞线、高强钢丝,这样不但可以降低锚杆的用钢量,最大限度地减少钻孔和施加预应力的工作量,而且可以减少预应力的损失。,(3)按实际锚筋截面计算锚杆承载力设计值:假设实际锚筋配置截面为Ag(AgAg),由下式按实际锚筋计算锚杆承载力设计值:(6.4)式中:Ng实际锚筋配置情况下锚杆的承载力设计值;k安全系数,取值同前;fptk所配锚筋(钢丝、钢绞线或钢筋)的抗拉强度设计值。,锚杆(索)的锚固力计算与锚固体设计锚杆(索)的锚固力也可称为锚杆(索)承载力。锚杆极限锚固力(极限承载力)是指锚杆锚筋沿握裹砂浆或砂浆沿孔壁产生滑移破坏时所能承受的最大临界拉拔力,它可以通过破坏性拉拔试验确定。锚杆容许锚固力(容许承载力)是极限锚固力(极限承载力)除以适当的安全系数(通常为2.02.5),这种锚固力在公路钢筋混凝土规范中称为容许承载力,而在工民建钢筋混凝土结构规范中又称为锚杆锚固力(承载力)标准值;这种标准值为设计锚固力提供参考,通常锚杆容许锚固力是锚杆设计锚固力(或称为锚固力设计值)的1.21.5倍。在设计时,锚杆的设计荷载必须小于锚固力设计值。锚杆锚固力的计算方法随锚固体形式不同而异,圆柱型锚杆的锚固力由锚固体表面与周围地层的摩擦力提供;而端头扩大型锚杆的锚固力则由扩座端的面承力及与周围地层的摩擦力提供。,(1)圆柱型锚杆锚固力与锚固长度计算对于圆柱型锚杆,根据锚固机理,锚杆的极限锚固力可按下式计算:(6.5)式中:L锚固体长度;d锚固体长度;qs锚固体表面与周围岩土体之间的极限粘结强度。式(6.4)给出了锚杆承载力设计值Ng(锚杆设计荷载),由式(6.5)可得锚杆要达到锚固力设计值Ng所需的最小锚固体长度:(6.6)式中:Lm锚固体长度;k安全系数,对于临时锚杆取1.61.8对于永久性锚杆取2.22.4;Ng锚杆锚固力设计值;qs锚固体表面与周围岩土体之间的极限粘结强度标准值(表6.5)。,(2)端部扩大头型锚杆的锚固力和锚固长度计算如图6.12所示,端部扩大头型锚杆的极限锚固力由三部分组成:直孔段圆柱型锚固体摩阻力、扩孔段圆柱型锚固体摩阻力以及扩大头端面承载力。前两项摩阻力可由式(6.5)计算,而扩大头端面承载力目前主要运用锚定板抗拔力计算公式近似计算。砂土中锚杆的极限锚固力计算:(6.7)粘性土中锚杆的极限锚固力计算:(6.8),式中:Pa锚杆极限锚固力;L1,L2,D,d锚固体结构尺寸;qs锚固体表面与周围岩土体之间的极限粘结强度标准值(表6.5);h,扩大头上覆土层的厚度和土体容重;cu土体不排水抗剪强度;c锚固力因数,与hD呈正比例增加,当hD10时,c保持恒定不再随hD的增加而改变。已知锚杆的承载力设计值为Ng,则满足该承载力设计值所需的最小锚固长度可由公式(6.7)和(6.8)求得,为:砂性土:(6.9)粘性土:(6.10)在实际工程设计中,为了便于计算,通常对式(6.9)和(6.10)根据经验进行简化,简化后的计算公式为:,式中:Ng锚杆锚固力设计值;k安全系数,对于临时锚杆取1.61.8对于永久性锚杆取2.22.4;Bc扩大头承载力修正系数,对于临时锚杆取4.56.5对于永久性锚杆取3.05.0;qs锚固体表面与周围岩土体之间的极限粘结强度标准值(表6.5)。,注:(1)表中qs系一次常压灌浆工艺确定,适用于注浆标号M25M30;当采用高压灌浆时,可适当提高。(2)极软岩:岩石单轴饱和抗压强度fp5MPa;软质岩:岩石单轴饱和抗压强度5MPafp30MPa硬质岩:岩石单轴饱和抗压强度fp30MPa。(3)表中数据用作初步设计时计算,施工时宜通过试验检验。(4)岩体结构面发育时,取表中下限值。,(3)锚筋与锚固砂浆间的最小握裹长度计算 前面对于圆柱型锚杆和端头扩大型锚杆的极限锚固力计算公式是基于锚固段锚杆体与周围岩土问的极限摩阻力给出的,这种公式的应用条件是锚杆破坏首先从锚固体与周围岩土之间的界面剪切滑移,一般来讲对于土层或较软的岩石满足这种条件。对于坚硬的岩层,如果锚固体与岩层问的极限摩阻力大于锚筋与锚固砂浆之间的极限握裹力,锚杆将首先从锚筋与锚固砂浆之间开始剪切破坏,此时应根据锚筋与锚固砂浆之间的粘结强度来计算锚杆的锚固长度。极限锚固力计算公式为:(6.11)式中:L锚固体长度;dg锚筋直径;n锚筋数量;qg锚筋与锚固砂浆之间的极限粘结强度。,锚杆锚固力设计值为Ng,锚杆要达到锚固力设计值所需的锚筋与锚固砂浆问的最小握裹长度:(6.12)式中:Lg锚筋与锚固砂浆间的最小握裹长度;k安全系数,对于临时锚杆取1.51.8对于永久性锚杆取2.02.3;qg锚筋与锚固砂浆间的极限粘结强度标准值(表6.6)。,注:(1)当采用两根钢筋点焊成束作法时,粘结力应乘以0.85折减系数。(2)当采用三根钢筋点焊成束作法时,粘结力应乘以0.7折减系数。(3)成束钢筋不应超过三根,钢筋总截面积不应超过孔径面积的20,以保证钢筋在砂浆中的锚固效果,除非采用特殊的锚固段钢筋和注浆体设计,并通过实验可适当增加钢筋数量。,锚杆弹性变形计算锚杆的变形是由锚杆本身在外荷作用下变形和由于地层徐变引起的变形组成,由地层徐变引起的锚杆变形计算可以通过徐变系数计算锚杆在不同时期的徐变位移。锚杆本身在外荷载作用下变形以弹性变形为主,下面是锚杆弹性变形的计算方法。,(1)非预应力土层锚杆弹性变形的计算 对于土层锚杆在外荷载作用下,除了锚杆自由段产生弹性变形外,锚固段也存在一部分变形,一般需要通过试验确定,在初步设计时可以近似估算:(6.13)式中:Sc锚杆弹性变形;Lf,La锚杆自由段和锚固段长度;A,Ac杆体截面面积和锚固体截面面积;Es,Ec杆体弹性模量和锚固体组合弹性模量,锚固体组合弹性模量可有下式确定:(6.14)Am,Em锚固体中砂浆体的截面积和弹性模量。,(2)非预应力岩石锚杆弹性变形的计算非预应力岩石锚杆的弹性变形主要为锚杆自由段的弹性变形,估算公式为:(6.15)(3)预应力锚杆(索)弹性变形的计算预应力锚杆在受到的轴向拉力小于预应力实际保留值时,可按刚性拉杆考虑;如果承受的轴向拉力大于预应力实际保留值,预应力锚杆将再次产生拉伸变形,此时锚杆的变形量可根据拉力超出预应力保留值的增量代入公式(6.13)和(6.15)中的Ng计算变形量。如果计算的变形量增量值较小时,预应力锚杆也可近似按刚性拉杆考虑。,锚杆(索)的锁定荷载和锚头设计对于锚杆,原则上可按锚杆设计轴向力(工作荷载)作为预应力值加以锁定,但锁定荷载应视锚杆的使用目的和地层性状而加以调整。1)边坡坡体结构完整性较好时,可将设计锚固力的100作为锁定荷载。2)边坡坡体有明显蠕变且预应力锚杆与抗滑桩相结合,或因坡体地层松散引起的变形过大时,应由张拉试验确定锁定荷载。通常这种情况下将锁定荷载取为设计锚固力的5080。3)当边坡具有崩滑性时,锁定荷载可取为设计锚固力的3070。4)如果设计的支挡结构容许变位时,锁定荷载应根据设计条件确定,有时按容许变形的大小可取设计锚固力的5070。5)当锚固地层有明显的徐变时,可将锚杆张拉到设计拉力值的l.21.3倍,然后再退到设计锚固力进行锁定,这样可以减少地层的徐变量引起的预应力损失。,锚杆头部的传力台座(张拉台座)的尺寸和结果构造应具有足够的强度和刚度,不得产生有害的变形;可采用C25以上的现浇钢筋混凝土结构,一般为梯形断面,表6.7为推荐尺寸表。预应力锚杆的锚具品种较多,锚具型号、尺寸的选取应保持锚杆预应力值的恒定,设计中必须在工程设计施工图上注明锚具的型号、标记和锚固性能参数。表6.8为OVM锚具的基本参数。,锚杆(索)的防腐设计对锚杆进行防腐设计时,应充分调查腐蚀环境,并选择适宜的防腐方法。防腐方法应适应岩土锚固的使用目的,即不能影响锚杆各部件(包锚固体、自由段和锚头)的功能,因此对锚杆的不同部位要作不同的防腐结构设汁。永久住锚杆应采用双层防腐,临时性锚杆可采用简单防腐,但当腐蚀环境严重时,也必须采用双层防腐。1)锚固体防腐锚固于无腐蚀条件地层内的锚固段,经出锈后可不再作特殊处理,直接由水泥砂浆密封防腐,但钢杆(索)必须居中,一般使用定位器,使水泥砂浆保护层厚度不小于20mm。对于锚固于具有腐蚀条件地层内的锚固段应作特殊仿佛处理,一般可用环氧树脂涂刷钢筋的方法。2)自由段防腐防腐构造必须不影响张拉钢材的自由伸长,对于预应力锚杆自由段防腐:采用、级钢筋制作锚杆的非锚固段(位于土层区段)仿佛处理可采用出锈、刷沥青船底漆二度,沥青玻纤布缠裹二层。对于预应力锚杆自由段防腐:采用钢绞线、精轧螺纹钢筋制作的予应力锚杆(索)非锚固段防腐宜,采用杆体表面出锈、刷沥青船底漆二度后绕扎塑料布,在塑科布上再涂润滑油,最后装入塑料套管中,形成双层防腐,自由段套管两端l00200mm范围内用黄油充填,外绕扎工程胶布固定。3)锚头防腐永久性锚杆的承压板一般应刷沥青。一次灌浆硬化后承压板下部残留空隙,应再次充填水泥浆和润滑油,经防腐处理后的非锚段外端应伸入钢筋混凝土构件内50mm以上。如锚杆不须再次张拉,则锚头的锚具涂以润滑油、沥青后用内配钢筋网的混凝土罩封闭,混凝土标号不低于C30,厚度不小于l00mm,混凝土保护层不小于30mm。如锚杆需要重新张拉,则可采用盒具密封,但盒具的空腔内必须有润滑油充填。4)临时性锚杆的防腐对于临时性锚杆重点对外锚头和自由段作防腐处理,锚固段一般可依靠注浆材料达到防腐效果。非预应力锚杆非锚固段可用出锈后刷沥青防锈漆处理。预应力锚杆自由段可采用出锈后刷沥青防锈漆或加套管方案。外锚头防腐可采用外涂防腐材料或外包混凝土方案解决。,6.3锚杆(索)的构造设计锚杆的一般构造要求 1)锚杆总长度为锚固段长、自由段长和外锚段之和。锚杆自由段长度按外锚头到潜在滑裂面的长度计算,但予应力锚杆自由段长度不小于5.0m;锚杆锚固段长度按计算确定,同时土层锚杆锚固段长度宜大于4.0m、小于14.0m,岩石锚杆锚固段长度宜大于3.0m、小于10.0m;如果岩石锚杆承载力设计值250kN,且锚固区段为结构完整无明显裂隙的硬质岩石时,锚固段长度可用2.03.0m。2)锚杆对中支架(架线环)应沿锚杆轴钱方向每隔l.02.0m设置一个,对于岩石锚杆支架间距可适当增大至2.02.5m。3)在无特殊要求的条件下,锚杆浆体一般采用水泥砂浆,其强度设计值不宜低于M20。4)锚杆外锚头、台座、腰梁及辅助件应按公路钢筋混凝土及预应力混凝土桥涵设计规范、钢结构设计规范进行设计。,锚杆挡墙的构造 1)板肋式和桩排式锚杆挡墙中的肋柱和排桩的间距一般为2.06.0m,肋柱间距较小,排桩间距较大。它们的截面尺寸除应满足强度和刚度要求外,其宽度还应满足挡土板(挡土拱板)的支座、锚杆穿孔和锚固要求,一般肋柱宽度不小于300mm,肋高不小于300mm;钻孔桩的直径不小于500mm,挖孔桩的直径不小于800mm。2)肋柱和排桩截面一般采用对称配筋作法,但如果顶端设单锚的桩锚结构可根据立柱的内力包络图采用不对称配筋作法。3)锚杆布置上下排垂直问距不宜小于2.5m,水平间距不宜小于2.0m。锚杆锚固体上覆土层不宜小于4.0m,上覆岩层不宜小于2.0m。倾斜锚杆的倾角l535为宜,不宜大45。对于直立边坡,第一锚点位置应设于坡顶下l.52.0m。,4)桩和肋柱顶应没置钢筋混凝土联系梁,以保证支挡结构整体共同工作;如果支护结构在施工期变形较大时,连系梁宜后浇或设置后浇段。5)现浇挡土板和拱板厚度不宜小于20cm,并应保证其满足支座长度构造要求。6)锚杆挡墙混凝土构件强度等级均不应小于C20,肋柱宜采用碎石混凝土。同时锚杆挡墙现浇混凝土构件温度伸缩缝的间距不宜大于2530m。7)外锚头的防腐设计作重点考虑时,应有可靠的防腐构造处理,保证其永久防腐的可靠性。,锚板支护结构的构造 1)系统锚杆布置要求:锚杆倾角宜与水平线成520夹角;锚杆布置宜采用菱形排列,或采用行列式排列;锚杆间距宜在1.52.5m,不应大于锚杆长度的一半,I、Il类岩体最大间距为3m,类岩体最大间距为2.5m,类岩体最大间距为l.5m;锚杆长度设计应遵循一般规定。2)局部锚杆布置要求:受拉破坏时,锚杆方向应按有利于锚杆受拉布置;受剪破坏时,宜逆着不稳定块体滑动方向布置。3)面板可采用喷射混凝土和现浇混凝土板;喷射混凝土的设计强度等级不应低于C20,喷射混凝土l天龄期的抗压强度不应低于5MPa,不同强度等级的喷射混凝土的设计强度可按表6.9采用。,4)喷射混凝土的重度可取22kNm3,弹性模量按表6.9采用,喷射混凝土与岩面的粘结力:整体状与块体状岩体不应低于0.7MPa,碎裂状岩体不低于0.4MPa。喷射混凝土与岩体的粘结强度试验方法应遵循锚杆喷射混凝土支护技术规范的规定。5)喷射混凝土面层厚度不应低于50mm,一般为80120mm;含水岩层的喷射混凝土支护厚度应不低于80mm;钢筋网喷射混凝土支护厚度不应小于100mm,钢筋直径宜为 6 l2,钢筋间距为200300mm,钢筋保护层厚度不应低于30mm。6)现浇板厚度宜为150200mm,混凝土强度等级标号不应小于C20。根据设计需要可采用双层或单层配筋,钢筋直径宜为 8 14,钢筋间距为200300mm。面板与锚杆应有可靠连结。面板应沿纵向按l520m的长度分段设置竖向伸缩缝。,锚钉边坡的构造 1)锚钉孔直径为70120mm,锚钉中的钢筋应采用级螺纹钢,钢筋直径 l6 32。2)锚钉布置方式可采用行列式或梅花式,间距12m,锚钉与水平面的倾角为520,一般不大于l5。锚钉的长度在岩质边坡中最短不应小于3m,在土质边坡中最短不应小于3m且不小于0.4倍坡高。3)现浇面板的厚度为l50200mm,混凝土强度等级不低于C20,板内设l级钢筋,钢筋网间距一般为200mm。4)锚钉边坡护面板必须与锚钉有可靠的连接。连数方式可采用螺帽加垫板或简易弯钩锚头,简易弯钩应与面板中的附加构造钢筋焊接。5)锚钉边坡的护面板应沿纵向按2030m的长度分段设置竖向伸缩缝。同时必须在护面板背面或坡脚前等适当部位设置排水带(沟),坡顶应采取隔水封闭措施。,6.4锚杆(索)的施工锚杆施工质量的好坏将直接影响锚杆的承载能力和边坡稳定安全,一般在施工前应根据工程施工条件和地质条件选择适宜的施工方法,认真组织施工。在施工过程中如遇与设计不符的地层,应及时报告设计人员,以作变更处理。锚杆施工包括施工准备、造孔、锚杆制作与安装、注浆、锚杆锁定与张拉等五个环节。,施工前的准备工作施工前的准备工作包括施工前的调查和施工组织设计两部分。施工前的调查是为施工组织设计提供必要资料,其内容有:1)锚固工程计划、设计图、边坡岩土性状等资料是否齐全;2)施工场地调查,施工对交通的影响情况,对于新建中的公路可不考虑;3)施工用水、用电条件调查;4)边坡工程周边可能对施工造成影响的各种状态调查;5)对于城区公路边坡,考虑施工噪音、排污的影响;6)掌握作业限制、环保法规或地方法令对施工造成的影响;7)其他条件的调查,如施工用便道、气象、安全等条件。,造孔锚杆(索)施工的第一步就是按照施工图的要求钻孔,钻孔是锚固工程费用最高、控制工期的作业,因而是影响锚固工程经济效益的主要因数。锚杆钻孔应满足设计要求的孔径、长度和倾角,采用适宜的钻孔方法确保精度,要使后续的杆体插入和注浆作业能顺利地进行。一般要求如下:1)在钻机安放前,按照施工设计图采用经纬仪进行测量放线确定孔位以及锚孔方位角,并作出标记。一般要求锚孔入口点水平方向误差不应大于50mm,垂直方向误差不应大于100mm。2)确定孔位后根据实际地层及钻孔方向选取适当的钻孔机具并确定机座水平定位和立轴倾角(即锚孔倾角),钻机立轴的倾角与钻孔的倾角应尽量相吻合,其允许的误差只能是岩心管倾角略大于立轴倾角,不允许有反向的偏差出现。开孔后,尽量保持良好的钻进导向。在钻进过程中根据实际地层变化情况,随时调整钻进参数,以防止造成孔斜偏差。3)在边坡锚固的钻孔过程中应注意岩芯的拾取,并尽量提高岩芯采取率,以求不断地准确地划分地层、确定不稳定岩土体厚度,判断断裂破碎带、滑移面、软弱结构面的位置和厚度,从而验证设计所依据的地勘资料,必要时修改设计。锚孔深度应超过设计长度0.51.Om,同时锚孔锚固段必须进入中风化或更坚硬的岩层,深度一般不得小于5m。,锚杆制作与安装在锚杆制作上,棒式锚杆的制作十分简单,一般首先按要求的长度切割钢筋,并在外露端加工成螺纹以便安放螺母,然后在杆体上每隔23m安放隔离件以使杆体在孔中居中,最后对杆体按要求进行防腐处理,这样棒式锚杆的制作便完成。而对于多股钢绞线的锚杆(如图6.2所示)制作较复杂,其锚固段的钢绞线呈波浪形,自由段的钢绞线必须进行严格的防护处理。对于各种形式的锚杆总的要求如下:1)严格按照设计进行钢筋(或钢绞线)选材。对进场的钢筋或钢绞线必须验明其产地、生日期、出厂日期、型号,并核实生产厂家的资质证书及其各项力学性能指标。同时须进行抽样检验,以确保其各项参数达到锚固施工要求。对于预应力锚固结构,优先选用高应力、低松弛的钢绞线,保证其与混凝土有足够的粘结力(握裹力),同时应保证预应力损失后仍能建立较高的预应力值。2)严格按照设计长度进行下料。对进场钢筋经检验达到上述技术要求后,即可进行校直、出锈处理,然后,按照施工设计长度进行断料,其长度误差不应大于50mm。一般实际长度应大于计算长度的0.30.5m,但不可下得过短,以致无法锁定或者给后续施工带来不便。3)锚杆组装可在严格管理下由熟练人员在工地制作。对于、J级钢筋连接时宜采用对接焊或双面搭接焊,焊接长度不应小于8倍钢筋直径,精轧螺纹钢筋定型套筒连接。锚杆自由段必须按照设计作防腐处理和定位处理。4)锚束放入钻孔之前,应检查孔道是否阻塞,查看孔道是否清理干净,并检查锚索体的质量,确保锚束组装满足设计要求。安放锚束时,应防止锚束扭压、弯曲,注浆管宜随锚体一同放人钻孔,注浆管端部距管底宜为50100mm,锚束放人角度应与钻孔角度保持一致,在人孔过程中,注意避免移动对中器,避免自由长度段无粘结护套或防腐体系出现损伤。锚束插入孔内深度不应小于锚束长度的95。,注浆施工锚固的注浆是锚杆施工过程中的一个重要环节,注浆质量的好坏将直接影响锚杆的承载能力。锚孔一般采用水泥浆或水泥沙浆灌注,浆液的拌合成分、质量和关注方式在很大程度上决定了锚杆的粘结强度和防腐效果。因此在锚杆注浆施工应当严格把握浆材质量、浆液性能、注浆工艺和注浆质量。一般要求有:1)按规定选择水泥浆体材料。选用水泥标号应为灌浆浆液标号的1.52倍,且不宜低于425#的新鲜普通硅酸盐水泥,对进场水泥应复查力学性能。搅拌浆液所用水中不含有影响水泥正常凝结、硬化的有害物质。选用砂料的含泥量按重量计不得大于3,砂中有害物质(如云母、轻物质、有机物、硫化物等)含量应低于12,砂的粒径以中砂(平均粒径0.30.5mm)较好,但要求含水量不应大于3。外加剂的品种与用量由试验确定,一般情况下加速浆体凝固的水玻璃掺量为0.53;提高浆液扩散能力和可泵性的表面活性剂(或减水剂),如三乙醇胺等,其掺量为水泥用量的0.020.05;为提高浆液的均匀性和稳定性,防止固体颗粒离析和沉淀而掺加的膨润土,其掺量不宜大于水泥用量的5。2)锚束浆液在28天龄期后要求抗压强度达到设计标号强度;当注浆为水泥砂浆时,一般选用灰砂比为l:11:2,水灰比为O.38O.48,且砂子粒径不得大于2mm,而二次高压注浆形成的连续球型锚杆的材料宜,选用水灰比0.450.50的纯水泥浆。对与配置好的浆液应有稳定性好,常温、常压下较长时间存放,不易改变其基本性质,不发生强烈的化学反应特点,同时浆液对注浆设备、管路、橡胶制品无腐蚀性、易清冼,浆液固化时无收缩现象(或收缩性小),固化后有一定的粘结性,能牢固地与岩石、混凝土及砂子等粘结。除此之外还要求浆体配置方便操作、容易掌握、原料来源丰富,价格便宜,能够大规模使用。3)注浆作业应连续紧凑,中途不得中断,使注浆工作在初始注入的浆液仍具塑性的时间内完成;在注浆过程中,边灌边提注浆管,保证注浆管管头插入浆液液面下5080cm,严禁将导管拔出浆液面,以免出现断杆事故。实际注浆量不得少于设计锚索的理论计算量,即注浆充盈系数不得小于l.0。4)二次高压注浆形成连续球型锚杆的注浆还应注意:一次常压注浆作业应从孔底开始,直至孔口溢出浆液;对锚固体的二次高压注浆应在一次注浆形成的水泥结石体强度达到5.0MPa时进行,注浆压力和注浆时间可根据锚固体的体积确定,并分段依次由下至上进行。,锚杆的张拉与锁定锚杆的张拉,其目的就是要通过张拉设备使锚杆杆体自由段产生弹性变形,从而对锚固结构施加所需求的预应力值。在张拉过程中应注重张拉设备选择、标定、安装、张拉荷载分级、锁定荷载以及量测精度等方面的质量控制,一般要求如下:1)张拉设备要根据锚杆体的材料和锁定力的大小进行选择。选择时应考虑它的通用性能,从而使得它具备除可能张拉配套锚具外,还能张拉尽可能多的其他系列锚具的通用性能,做到一项多用。同时张拉设备应能使预应力筋的拉力既能从已有荷载上增加或降低,又能在中间荷载下锚固,最后张拉设备还应能拉锚以确定预应力荷载的大小。2)张拉前对张拉设备进行标定。对于1000kN以下的千斤顶,可用2000kN的压力机标定,标定的数据与理论出力误差应小于2。3)安装锚夹具前,要对锚具进行逐个严格检查。锚具安装必,须与孔道对中,夹片安装要整齐,裂缝要均匀,理顺注浆管后依次套人锚垫板、工作锚、限位板,在限位板上用千斤顶预拉,每根预拉一定荷载后,再套入千斤顶、工具锚、工具夹片等。4)张拉前,必须待锚固段、承压台(或粱)等构件的混凝土强度达到设计强度方能进行张拉,同时必须把承压支撑构件的面整平,将台座、锚具安装好,并保正和锚索轴线方向垂直(误差5)。5)张拉应按一定程序和设计张拉速度(一般为40kNmin)进行。正式张拉前进行二次预张拉,张拉力为设计拉力的l020。正式张拉荷载要分级逐步施加,不能一次加至锁定荷载。分级施加荷载和观测变形的时间可按表6.10执行。注:Nt为锚索设计拉力,即最终锁定荷载。,6.5锚杆(索)的试验与观测锚杆(索)的性能试验锚杆的性能试验(又称为破坏性试验或基本试验)是在锚固工程开工前为了检验设计锚杆性能所进行的锚杆破坏性抗拔试验,其目的是为了确定锚杆的极限承载力,检验锚杆在超过设计拉力并接近极限拉力条件下的工作性能和安全程度,及时发现锚索设计施工中的缺陷,以便在正式使用锚杆前调整锚杆结构参数或改进锚杆制作工艺。性能试验的锚杆数量一般为三根,用作性能试验的锚杆参数、材料和施工工艺必须与工程锚杆相同,并且必须在与安设工程锚杆相同的地层中进行。张拉过程中采用逐级循环加荷,每级循环荷载的增量为0.1Agfptk0.15Agfptk(fptk为所配锚筋的抗拉强度设计值,Ag为实际锚筋配置截面);在各级荷载下锚束受力与伸长值量测应同步进行,每一循环中的最大荷载稳定时间为10min,其余均为5min;最大荷载为,锚杆的破断荷载,但不应超过锚筋强度标准值的0.8倍(即为0.8Agfptk)。加荷过程及观测时间如表6.11所示,图6.14为基本试验(QS)曲线。,锚杆(索)的验收试验锚杆验收试验是在锚固工程完工后为了检验所施工的锚杆是否达到设计的要求而进行的检验性抗拔试验,该试验起到鉴别工程是否符合要求的目的。通常验收试验检验的锚杆的数量应不少于锚杆总数的5,且一个边坡不得少于3根。验收试验最大试验荷载:对于永久性锚索应为设计轴向拉力值的l.5倍;对于临时性锚索应为设计轴向拉力值的1.2倍。荷载分级施加并测读各级荷载下的伸长值。试验结果进行计算机处理,并绘制试验荷载位移(QS)曲线(图6.15)。锚杆验收试验满足以下条件,即为合格:1)验收试验所得的总弹性位移超过自由段长度理论弹性伸长的80,但小于自由段长度与12锚固段长度之和的理论弹性伸长。2)在最大试验荷载作用下,锚头位移趋于稳定。锚杆验收试验加荷等级与观测时间见表6.12。,锚杆(索)的蠕变试验在软粘土中设置的锚杆,在较大荷载作用下会产生很大的蠕变变形,为了掌握软粘土中的锚杆的工作特性,国内外的有关标准都对锚杆的蠕变试验作了相应的规定。我国有关锚杆标准规定,凡塑性指数大于20的土层中的锚杆,均应进行蠕变试验,且试验的根数不应少于3根。蠕变试验的加荷等级和观测时间应满足表6.13的要求,在观测时间内,荷载必须保持恒定,每级荷载下观测蠕变量随时间的变化。最后将每级荷载下的锚杆蠕变量一时间对数曲线在slgt坐标系中绘出。定义Slgt曲线的斜率值(slgt曲线为直线)为蠕变系数,即:,式中:Ks某一级荷载下的蠕变系数;slt1时刻的蠕变量;s2t2时刻的蠕变量。锚杆蠕变试验所测得的最后一级荷载下的最终一段观测时间内的蠕变系数不应大于2.0mm。,锚杆(索)的长期观测锚杆施工完毕后,为了了解锚杆预应力损失情况和锚杆的位移变化规律,以便确认锚杆的工作能力,需要对锚杆进行长期观测,一般连续观测时间超过24小时就可看作是长期观测。在观测结果过程,如果发现锚杆的工作性能较差或不能完全承担锚固力,可以根据观测结果,采用二次张拉锚杆或增设锚杆数量等措施,以保证边坡锚固工程的可靠性。锚杆预应力变化的可采用测力计,测力计按照机械、振动、电气和光弹原理制作成不同类型,锚杆长期观测中应当选择精度高、准确可靠的测力计,测力计一般安装在传力板和锚具之间并始终保持中心受荷。由于锚杆张拉锁定后头几个月预应力损失较大,一年后逐渐递减,两年后预应力损失基本终止,趋于稳定状态。故张拉锁定后的长期监控时间一般不得少于l年,但如遇自然环境恶劣并对边坡稳定性有较严重影响时,监控时间应适当延长。且每个工点不得少于35个观测点。同时在混凝土浇筑过程中应有专人对观测设施进行监护。锚杆张拉锁定后第一个月内每日观测l次;23个月内每周观测1次;46个月内每月观测3次;7个月1年内每月观测2次;l年以后每月观测1次。在观测过程中,如出现异常,应立即进行检查,处理完毕后,方能继续观测。观测成果及时整理,第一年内的观测成果将作为工程验收的资料。,思 考 题简述锚杆(索)的结构与分类。简述锚杆在边坡加固中通常与哪些支挡结构联合使用及相应的使用范围。如何进行锚杆体和锚固体的设计?如何对锚杆(索)的锁定荷载 进行调整?简述锚杆(索)的构造设计。简述锚杆施工 的具体步骤。,