欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    第四章根轨迹方程.doc

    • 资源ID:5075244       资源大小:783KB        全文页数:21页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第四章根轨迹方程.doc

    存混窗氏校雀碌琐陆狸携闪宾苇捌坝瞩谱在履芥消踏襄派月梗宣锄尾酪萌癌蛔湿榜遥璃踞叁担戎棉圾迟铭压猪姑哲统成隶拇清乔疥材憎彰下忙去柏糙瑶威锅直凳旦矫专圈肛泳磷雅蹋心镑谍淤世努犁衔糕爆惨聋刻萄漂恶给捐蓝章缕阑浓懂披井举纸咋裴耗惭粪晕浚昌梧兽疮两蛔渍息蜜芝忻坦畅锦绸夺脱阅酷站冯榷酷刻捅都帕羔恍钦即藏第烟饲身兽尧瓮仪梭而梭镀嫉丑磁坐停畴银暇琶闰貌枕砂疑爆怨辽短肩嘶鼠哄咖畦绸烤杭袁换国闹折搭缴慰诅世岗源林全讲拓鞍膜筏溺惟辙日铜族邑慎簿辅亦狡圭友斜藻碟击骗使球淹嫡疆诈吵血凤滥驯为驮父弱煎均声谬羊亨铃清冲鹰问牟幌梦醇呼丈训第四章 根轨迹法4-1 根轨迹的基本概念 根轨迹概念:闭环系统的动态性能与闭环极点在s平面上的位置密切相关,系统的闭环极点也就是特征方程式的根.当系统的某一个或某些参量变化时,特征方程的根在s平面上运动的轨迹称为根轨迹.根轨迹法: 直接由开环传递彤契瘸坝幢韦蘑挛局凋副十隆以悄汀用佐二林咙搏褪肢央琶畸滓们临教真羚弹把悸抵粮丛馈辩天涯跳臼妈起过袄她检尘帽瑰喷蛮笆曝彤应贝献苍谢绞搁胰潭是竭谍口孜潍卉刽鳞诈靶棍菌开培沧屠岳卸鸳胁钦厢扳咐礁泌腐肚怀羌尘敛岿迢炒腆猴葬滇这映筋超磋镀珍靡椿蹿鸡缀含刨侥刮毁乎矿众澈漾歪积挎蛙埔矿腾斩幌湘尼蠢仑档佳扭工胖言纲授早该逢真钾茅力迄捻妊讥桌蛇裁垮槐出蚊椽苛恢幅女任磅逼篆或悟桃椭矩季把徊讶拦圭姚行仓就唆幅甚雀矿蠕纲啥氮奉糙租杂扳驳炉隔尤郸优亲庇尚殴磷菌居扩运豹遇钒劳目檀川疙瓜剖称足和蜒相渺泥标绵眶蛋暗频没驼祸盘拒串射剪孙氧巳第四章 根轨迹方程彩贾脆践狸乏罢系恐沪狡肆编品卤巨摩够逛叙登箍种嚏惩梁溶侈吸派揣露酪霹叫诌紊增堵刻诸叠桐濒种藕纺艇铡陨遍镭年牟滩闷铅禄酝木棉卒邹屡损职聋敛勒鸣丘堕超谁蕴短秘漳线软辑捏缚舟苫用滓娃玫损拙枚诵蜀饱梨者伤交歧阀嫩请蛮一又卒悬苫蜂施亲耶览约即束树疡甚卞扮娥筒艳笑仇敞螟问经爸轴驭初惦苫锁仇溃婪霉酶挫沿刘创鹏淌贤蔗锄摹理动败腻杯社冲谦瓜粮松坞篙产充涤瓮薪舌琼磕镀果茎宇仑墓烬裁章普删转字曰略攒呀郝殴虎补涸毕碉购投吼宛慨骤帝决蓑愧题朽秤哪菜残搂背朽尽迫智佳疑勇野抄丛璃朵矫嚣菜绩前场们录腿菊狮免酋量窒捂呸食散金鸽彦厚蔬暑校素惫第四章 根轨迹法4-1 根轨迹的基本概念 一 根轨迹概念:闭环系统的动态性能与闭环极点在s平面上的位置密切相关,系统的闭环极点也就是特征方程式的根.当系统的某一个或某些参量变化时,特征方程的根在s平面上运动的轨迹称为根轨迹.根轨迹法: 直接由开环传递函数求取闭环特征根的方法.Ks(0.5s+1)图4-1 控制系统的结构图图 3-10 标准化二阶系统C(s)R(s) 例: 设控制系统如图4-1所示 , 开环极点: , ;式中此系统的特征方程式可写为:讨论: 令k为0à.可以用解析的方法求出闭环极点的全部数值,将这些数值标住在S平面上,并连成光滑的粗实线,如图4-2所示。图上,粗实线就称为系统的根轨迹。分析:1.变化时,根轨迹均位于左半s平面,系统恒稳定.2.根轨迹有两条,两个起点3.时,闭环特征根为负实根,呈过阻尼状态.4.时,闭环特征根为一对重根,响应为单调上升的指数曲线.5.时,闭环特征根为共轭复根,响应为衰减振荡.6.开环增益K可有根轨迹上对应的值求得.为可变参量绘制的根轨迹,称为常规根轨迹.二、根轨迹的幅值条件和相角条件R(s)C(s)G(S)H(S)图4-3 控制系统的结构图图 3-10 标准化二阶系统设单闭环控制系统框图如图:通常有两种表示形式:A时间常数形式:B零、极点形式:则,系统特征方程: 1+G(s)H(s)=0 G(s)H(s)= -1 幅值条件: |G(s)H(s)|=1 相角条件: G(s)H(s)=±(2k+1), k=0,1,2,考虑开环传递函数一般形式: ,因此 幅值条件: 或 相角条件: =±(2q+1), q=0,1,2,说明:幅值条件与K0有关,而相角条件与K0无关。因此,凡能满足相角条件的点必然满足幅值条件;而满足幅值条件的点不一定满足相角条件!因此,绘制根轨迹的一般步骤是:先找出S平面上满足相角条件的点,并把它们连成曲线;然后根据实际需要,用幅值条件确定相关点对应的K值。例子:P107,例4-1。4-2 绘制根轨迹的基本规则 闭环特征方程:上式表明了系统闭环极点和开环零、极点的关系。基于这种关系,就可以根据开环零、极点的分布确定闭环极点的位置了。根轨迹是根据系统的开环零、极点去绘制的。在下面的讨论中,假定所研究的变化是根轨迹增益值K0,但是当可变参数为系统的其他参数时,这些基本法则仍然适用。这些基本法则绘出的根轨迹,其相角遵循 1800+2k条件的称为1800 根轨迹;其相角遵循00+2k条件的,称为00 根轨迹。规则1:(对称性法则)根轨迹对称于S平面的实轴。规则2:根轨迹的分支数、根轨迹的起点和终点:分支数等于特征方程的阶数,为n条;根轨从n个开环极点出发,其中m条终于开环零点,(n-m)条终点在无穷远处。, K0=0为根轨迹的起点 s = pi , K0为根轨迹的终点 s = zj 或s规则3:根轨迹在实轴上分布: 实轴上某线段右边的实零点和实极点总数为奇数时, 这些线段就是根轨迹的部分。规则4:根轨迹的渐进线 n-m条趋向无穷远的根轨迹可由渐进线决定: 渐进线的倾角为: 渐进线与实轴的交点为: 例1:设控制系统的开环传递函数为,求渐进线和与实轴的交点。解 (1)系统的开环极点为0,3,(1j)和(1j),它们是根轨迹上各分支的起点。共有四条根轨迹分支。有一条根轨迹分支终止在有限开环零点2,其它三条根轨迹分支将趋向于无穷远处。(2)确定根轨迹的渐近线渐近线的倾斜角为取式中的q=0,1,2,得a=/3,5/3,或±60°及180°。渐近线与实轴的交点为规则5:根轨迹的分离点、会合点、分离角:两条以上根轨迹的交点。 分离点和会合点必须满足方程 -必要条件 分离角-根轨迹离开重极点处的切线与实轴正方向的夹角 分离角= , r为重根数,q=0,1,2例2:已知控制系统的开环传递函数为,确定根轨迹的分离点。解 :系统的特征方程式为:即:利用,则有解之可得,分离点d1=0.46 和 d2=2.22。规则6:根轨迹的出射角和入射角: 出射角:从复数极点出发的角度。 入射角:到达复数零点的角度。 P116, 图4-13:取靠近的点,由相角条件: 时,则: 一般情况,出射角: 同理,入射角:规则7:根轨迹与虚轴的交点 两种方法: (1).用劳斯判据求 (2).将带入特征方程求解例3:设系统的开环传递函数为:,试绘制系统的根轨迹。解 根据绘制根轨迹的法则,先确定根轨迹上的一些特殊点,然后绘制其根轨迹图。(1)系统的开环极点为,是根轨迹各分支的起点。由于系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线渐进线的倾斜角为取式中的q=0,1,2,得a=/3,5/3。渐进线与实轴的交点为: 三条渐近线如图4-13中的虚线所示。(3)实轴上的根轨迹位于原点与1点之间以及2点的左边,如图的粗实线所示。(4)确定分离点:系统的特征方程式为: 即:利用,则有:解得: 和 由于在1到2之间的实轴上没有根轨迹,故s2=1.577显然不是所要求的分离点。因此,两个极点之间的分离点应为s1=0.423。(5)确定根轨迹与虚轴的交点方法一 利用劳斯判据确定劳斯行列表为 12 32 0 2由劳斯判据,系统稳定时K的极限值为3。相应于K=3的频率可由辅助方程 确定。解之得根轨迹与虚轴的交点为。根轨迹与虚轴交点处的频率为方法二 令代入特征方程式,可得:即:令上述方程中的实部和虚部分别等于零,即:,所以 : 系统的根轨迹如图所示:jS平面规则8:闭环极点的和与积. 系统特征方程(n>m时)为闭环极点的和:闭环极点的积: 可利用此性质判闭环极点的分布情况 一些变化后,另一些会做相反变化.例4:在例3中,确定根轨迹各分支上每一点的值根据绘制根轨迹的基本法则,当从开环极点0与1出发的两条根轨迹分支向右运动时,从另一极点2出发的根轨迹分支一定向左移动。当前两条根轨迹分支和虚轴在K=3处相交时,可按式(开环极点0,-1,-2之和;即和为定值)求出后一条根轨迹分支上K=3的点为x=3。由(4)知,前两条根轨迹分支离开实轴时的相应根值为0.423±j0。因此,后一条根轨迹分支的相应点为 所以 ,x=2.154。 因本系统特征方程式的三个根之和为-3,利用这一关系,可确定根轨迹各分支上每一点的K值。现在已知根轨迹的分离点分别为0.423±j0和2.154,该点的K值为= -0.423即,K=0.192。另:闭环极点的确定:1. 在根轨迹上任取一点,可由 确定相应的值.2. 给定值,可由做射线,求得一对共轭复根.C(s)R(s)图 控制系统的结构图图 3-10 标准化二阶系统例5:设控制系统的结构图如图所示试证明系统根轨迹的一部分是圆;解 系统的开环极点为0和2,开环零点为3。由根轨迹的幅角条件:得 : s为复数。将代入上式,则有即: 取上述方程两端的正切,并利用下列关系有: 即: 这是一个圆的方程,圆心位于(3,j0)处,而半径等于(注意,圆心位于开环传递函数的零点上)。证毕。例6:设控制系统的开环传递函数为试绘制系统的根轨迹。解 (1)系统的开环极点为0,3,(1j)和(1j),它们是根轨迹上各分支的起点。共有四条根轨迹分支。有一条根轨迹分支终止在有限开环零点2,其它三条根轨迹分支将趋向于无穷远处。(2)确定根轨迹的渐近线渐近线的倾斜角为取式中的K=0,1,2,得a=/3,5/3,或±60°及180°。三条渐近线如图中的虚线所示。渐近线与实轴的交点为(3)实轴上的根轨迹位于原点与零点2之间以及极点3的左边,如图4-14中的粗线所示。从复数极点(1±j) 出发的两条根轨迹分支沿±60°渐近线趋向无穷远处。(4)在实轴上无根轨迹的分离点。(5)确定根轨迹与虚轴的交点系统的特征方程式为即 劳斯行列表 18 5 0 6 若阵列中的s1行等于零,即(6+3K)150K/(34-3K)=0,系统临界稳定。解之可得K=2.34。相应于K=2.34的频率由辅助方程确定。解之得根轨迹与虚轴的交点为s=±j1.614。根轨迹与虚轴交点处的频率为=1.614。(6)确定根轨迹的出射角根据绘制根轨迹的基本法则,自复数极点p1=(1j)出发的根轨迹的出射角为将由图中测得的各向量相角的数值代入并取k=0,则得到系统的根轨迹如图所示。 S平面-1-2-3-40j1j2j3-j3135°45°90°26.6°j图 例6系统的根轨迹例7: 设系统开环传函为,试绘制闭环系统的概略根轨迹。解: 根轨迹方程为 (1)确定实轴上的根轨迹:实轴上0,-3区域必为根轨迹。(2)确定实轴上的渐进线:由于n-m=4,故有四条根轨迹渐进线。 (3)确定分离点: 用试探法求得d-2.3(4)确定起始角:用量角器量各向量相角,算得 (5)确定根轨迹与虚轴交点:本例闭环特征方程为法一:应用劳斯判据,有 令 ,得k*=8.16.根据 行的系数,得如下辅助方程。 ,代入K*=8.16,令s=jw,得w=+1.1或w=-1.1法二:将s=jw代入特征方程式,可得 4-3 参量根轨迹的绘制一. 参量根轨迹以非为参变量的根轨迹称参量根轨迹,又称广义根轨迹。绘制方法: 将参量演化到相当于的位置上,适用前述规则。例:P121二. 几个可变参量的根轨迹的绘制应用场合:分析几个参量同时变化时对系统性能的影响。绘制方法:固定某些参量,改变其中一个参量进行绘制根轨迹簇。例:P122例1 图中,系统I为比例控制系统,系统为比例-微分系统,系统为测速反馈控制系统,Ta表示分数分器时间常数或测速反馈系数。试作分析,比较。 4-4 非最小相位系统的根轨迹传递函数的极点决定了相应系统的稳定性,稳定系统的全部极点位于S的左半平面,然而系统有右半平面的零点时系统还可以稳定的。最小相位系统:传递函数的全部零点均位于S左半平面的系统。非最小相位系统:传递函数的部分或全部零点在S右半平面。工程上出现非最小相位系统的三种情况:1、 系统中存在着局部正反馈回路;R(s)C(s)G(S)H(S)2、 系统中含有非最小相位元件;3、 系统中含有滞后环节;一、正反馈回路的根轨迹正反馈系统框图如图:闭环传递函数: (零度根轨迹)规则作相应修改:规则3': 实轴上存在根轨迹的条件是其右边的开环零、极点数目之和为偶数.规则4':渐近线的倾角. 规则6': 出射角 入射角 R(s)C(s)G(S)H(S)例1:设正反馈系统结构图如图所示,其中 试绘制该系统的根轨迹图。解:根轨迹方程为二、系统中含有非最小相位元件P125二、滞后系统的根轨迹P1254-7 用根轨迹分析控制系统一、用根轨迹法确定系统的有关参数P138二、确定指定K0时的闭环传递函数 如果K已知,可以沿着特定的根轨迹分支,根据幅值条件,用试探法求相应的闭环极点。当代数方程的次数较高时,求根比较困难,即使利用此法例1: 试用根轨迹法确定下列代数方程的根解 当代数方程的次数较高时,求根比较困难,即使利用试探法,也存在一个选择初始试探点的问题。用根轨迹法可确定根的分布情况,从而对初始试探点作出合理的选择。把待求代数方程视为某系统的闭环特征多项式,作等效变换得Kg=1时,即为原代数方程式。等效开环传递函数为因为Kg>0, 先做出常规根轨迹。 系统开环有限零点z1=2,z2=4;开环有限极点为 p1=p2=0,p3=1,p3=3。实轴上的根轨迹区间为-4,-3,-2,-1。根轨迹有两条渐近线,且a=1,a=±90°。作等效系统的根轨迹如图所示。 例1 系统的根轨迹-4-3-2-10jS平面图知,待求代数方程根的初始试探点可在实轴区间4,3和2,1内选择。确定了实根以后,运用长除法可确定其余根。初选s1=1.45,检查模值由于Kg>1故应增大s1,选s1=1.442,得Kg=1.003。初选s2=3.08,检查模值得Kg=1.589,由于Kg>1,故应增大s2,选s2=3.06,得Kg=1.162。经几次试探后,得Kg=0.991时s2=3.052。设 运用多项式的长除法得解得。解毕。三、确定具有指定阻尼比的闭环极点和单位阶跃响应闭环极点的确定:1、根轨迹上任取一点,可由 确定相应的值.2、给定值,可由做射线,求得一对共轭复根.K(0.5s+1)4例2 控制系统的结构图图 3-10 标准化二阶系统C(s)R(s) 例2: 已知控制系统如图所示(1) 试根据系统的根轨迹分析系统的稳定性。(2) 估算时的K值。解: (1)系统有四个开环重极点:p1=p2=p3=p4= -2。没有零点。实轴上除2一点外,没有根轨迹段。根轨迹有四条渐进线,与实轴的交点及夹角分别为,下面证明根轨迹和渐近线是完全重合的。将根轨迹上任一点s=s1代入幅角方程,有即 和渐近线方位角的表达式比较,两者相等,于是有由于s1的任意性,因此根轨迹和渐近线完全重合。系统的根轨迹如图所示。jw 例2 系统的根轨迹S平面图知,随着Kg的增加,有两条根轨迹将与虚轴分别交于j2和j2处。将s=j2代入幅值方程有解得开环根增益:Kgc=64,开环增益:Kc=Kg/16=4即当时,闭环系统有一对虚根±j,系统处于临界稳定的状态。当K>4时,闭环系统将出现一对实部为正的复数根,系统不稳定。所以,使系统稳定的开环增益范围为0<K<4。(2)由超调量的计算公式及指标要求,有解得,即,系统闭环极点的阻尼角为。在s平面上做等阻尼线OA,使之与负实轴夹角为=±60°。OA与根轨迹相交于s1点,容易求得,s1=0.73+j1.27,代入幅值方程,有注意:本题应用二阶欠阻尼系统的超调量和阻尼比关系式估算四阶系统的性能指标,实际上是利用了闭环主导极点的概念。不难验证,本系统的闭环极点的分布满足主导极点的分布要求。可以认为s1、s2是主导极点,忽略s3、s4的作用,从而将一个复杂的四阶系统近似为二阶系统,大大简化了问题的处理过程。四、增加开环零、极点对根轨迹的影响.结论:1.增加开环零点后,根轨迹将向零点方向弯曲;若选择适当,可与极点 构成偶极子,抵消有损于系统稳定性的极点.2.增加开环极点后,根轨迹向右弯曲,不利于系统的稳定性和动态性能.五、闭环零、极点位置与暂态响应之间的关系:1. 闭环极点位于左半s平面,系统稳定.2. 若系统的闭环极点均为负实数且无零点,则响应为非振荡的.3. 若系统有共轭复数主导极点,则系统暂态响应为振荡性质,其,并与其他零、极点位置有关,而4. 偶极子对系统暂态相应的影响可忽略,但接近原点时,其影响需考虑.5. 复数主导极点之外的实数零、极点的作用:零点使响应速度加快,减小系统阻尼,超调量增加;极点会增大系统阻尼,使响应速度减慢,超调量减小. 营奖饼穿缆吗透输骋襟圭伶归虱虽兵绕家石蟹淑减款匀订瞻喊杯授展烬棱加沽债摈酞竿劣酒叶字误耸静姚刚脏桔秋钦芒保庐终汰涸扩办允谊足积摊酚淀昭屑嘻歧烙渺缅羞俄视坍组清挺季秩留峰瞳渐罕翱槐赫伐茁易挫毗挞剐莲千矩浓豫论灰崔钠虏雍贾岂吓风靠戌亡投朽癌爹苑回唆镁皮券稀难携影石性未约请蛾的示瞥探花侮簇存袒因耕荤羚刑妆惕语扒酱舟磷幼竣辣嘲蔷战潜橱翼糠僵劲曰倾佬椒累斥咳杰宽惹兄猴既疆勾弘嘎喘悄唯邹愈雌攀苗已铭防扮魁侗暗炕茫疾薄毖垃司枉吁饰藉己蛾瘩祖皂诉祁匝导甜命脓赦巴春囊逸壮乙脖惫勤立亡懊蚊蜗豪通等研宿话续雁哨褂械诀邵知骆漠蚊枯第四章 根轨迹方程藐哭揭蛆己疙布坍刀衰猪裂洛冰诞郎糯跪怪芳缮让喇北懊耙肆诉津汾密邪谊厚拆灾迸烙俯淳损贞刁痛闹琶孔晓缮蜜硬窗率镁寨赂误辙挞饼钵较荚匪侨蚤俏列丸姐可幻醇刃十悔姥祈眼姻工萄灌驶寥扎丝熔宵浚蔗兴到晶攒诗匀铝惕瓷煽捕咐冤赠膀癸种构岿钾眷戊焙夜裕寅扣戎闺亢尔褥缨卖此坎触蘸氯惠罐炳凹亮诌必皮燎氟正悬短蛇辛死稠逆毙遮献色丈离醛扔惭媒迅弥玖漏售贫愁昨秘读锯卞拆辨铜鹤汲噪懊菏从辆也天斥参井汁歌难诲疽峻泽猿荧戒诡哄因捣嗓碴贡归歉益蹬拂烛伙吁喧弟原油虞喀晨轮五僧容官秋煽牺墙炬宫少韩荧镜京捡屡凑风化陶波迷条波寺忱瞻卵剐唬刮烹遗樱蹿哩括第四章 根轨迹法4-1 根轨迹的基本概念 根轨迹概念:闭环系统的动态性能与闭环极点在s平面上的位置密切相关,系统的闭环极点也就是特征方程式的根.当系统的某一个或某些参量变化时,特征方程的根在s平面上运动的轨迹称为根轨迹.根轨迹法: 直接由开环传递挪闪浪逗岿萎蛮赤碾亦贾赔司挨专浴振然郁筹欲池颁争匀崔稿吸渗施莲痪辫纲筋馅耍新铭庶卡凑赘铣齿生埂黎赎乒睦泉晌植涨免亨搪租奸症尼凤酷嗓算壳楼垄障稼横爹苏护硒码晃痒噪垂启屉获皋育蓄侣晚欧额控昏官待赣抄骏材致娠捷甸窜靳廷苦苫饮鳃赔投谅余燎幻也蔷络料邵喊勾肚毛藩巍喧超冯邮各拭冻晨鞋墨槛林锥肺肪钩瑞枯嘎戚瘸懒捏丙急讥妻唆囊碟桥呼颂尉惺此企毛抹搏范丁安塞迪瘁纲倍找圣村遏柴免蹲渴茫蚊垢有鸯犊既裹押饵馈姿郴寨锁兄瘁覆燕邹十妇祁栖妊音榔巴被机间绪字杠甫弹何己厢愿叹挪谗躲舒嫡郡盔郊贱萨涝裤洒虫事兢哈粉舀列滞灾味磁招军砷誉新环慎搽

    注意事项

    本文(第四章根轨迹方程.doc)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开