欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《用样本的数字特征估计总体的数字特征.ppt

    • 资源ID:5072736       资源大小:291KB        全文页数:24页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《用样本的数字特征估计总体的数字特征.ppt

    1,2.2.2 用样本的数字特征估计总体的数字特征,众数、中位数、平均数2.标准差,2,众数、中位数、平均数,3,一 众数、中位数、平均数的概念,中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,众数:在一组数据中,出现次数最多的数据叫做这组数据的众数,众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.,4,练习:在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:,分别求这些运动员成绩的众数,中位数与平均数,解:在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70;,5,这组数据的平均数是,答:17名运动员成绩的众数、中位数、平均数依次是1.75(米)、1.70(米)、1.69(米).,6,例如,在上一节调查的100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t.如图所示:,二、众数、中位数、平均数与频率分布直方图的关系,1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。,7,2、在样本中,有50的个体小于或等于中位数,也有50的个体大于或等于中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值。下图中虚线代表居民月均用水量的中位数的估计值,此数据值为2.03t.,8,说明:2.03这个中位数的估计值,与样本的中位数值2.0不一样,这是因为样本数据的频率分布直方图,只是直观地表明分布的形状,但是从直方图本身得不出原始的数据内容,所以由频率分布直方图得到的中位数估计值往往与样本的实际中位数值不一致.,9,下图显示了居民月均用水量的平均数:,10,三 三种数字特征的优缺点,1、众数体现了样本数据的最大集中点,但它对其它数据信息的忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居民数多,但它并没有告诉我们多多少.,11,2、中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点。如上例中假设有某一用户月均用水量为10t,那么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是不能忽视的。,12,3、由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质。也正因如此,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计时可靠性降低。,13,四 众数、中位数、平均数的简单应用,例 某工厂人员及工资构成如下:,(1)指出这个问题中周工资的众数、中位数、平均数,(2)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?,解:众数为200,中位数为220,平均数为300。因平均数为300,由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平。,14,标准差,15,平均数向我们提供了样本数据的重要信息,但是平均有时也会使我们作出对总体的片面判断因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽的因此,只有平均数还难以概括样本数据的实际状态,如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:,甲:,乙:,如果你是教练,你应当如何对这次射击作出评价?,如果看两人本次射击的平均成绩,由于,两人射击 的平均成绩是一样的.那么两个人的水平就没有什么差异吗?,16,(甲),4,5,6,7,8,9,10,环数,频率,0.1,0.2,0.3,频率,(乙),直观上看,还是有差异的.如:甲成绩比较分散,乙成绩相对集中(如上图所示).因此,我们还需要从另外的角度来考察这两组数据.例如:在作统计图表时提到过的极差.,17,甲的环数极差=10-4=6 乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.,考察样本数据的分散程度的大小,最常用的统计量是标准差标准差是样本平均数的一种平均距离,一般用s表示,所谓“平均距离”,其含义可作如下理解:,18,由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差,一个样本中的个体与平均数之间的距离关系可用下图表示:,考虑一个容量为2的样本:,19,显然,标准差越大,则a越大,数据的离散程度越大;标准差越小,数据的离散程度越小.,用计算器可算出甲,乙两人的的成绩的标准差,由 可以知道,甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.,上面两组数据的离散程度与标准差之间的关系可用图直观地表示出来.,20,例题1:画出下列四组样本数据的直方图,说明它们的异同点.,解:四组样本数据的直方图是:,21,22,四组数据的平均数都是5.0,标准差分别是0.00,0.82,1.49,2.83.虽然它们有相同的平均数,但是它们有不同的标准差,说明数据的分散程度是不一样的.,标准差还可以用于对样本数据的另外一种解释.例如:在关于居民月均用水量的例子中,平均数 标准差s=0.868,所以,23,例2 甲乙两人同时生产内径为25.40mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm),甲 25.46,25.32,25.45,25.39,25.36 25.34,25.42,25.45,25.38,25.42 25.39,25.43,25.39,25.40,25.44 25.40,25.42,25.35,25.41,25.39,乙 25.40,25.43,25.44,25.48,25.48 25.47,25.49,25.49,25.36,25.34 25.33,25.43,25.43,25.32,25.47 25.31,25.32,25.32,25.32,25.48,从生产的零件内径的尺寸看,谁生产的质量较高?,24,分析:每一个工人生产的所有零件的内径尺寸组成一个总体,由于零件的生产标准已经给出(内径25.40mm),生产质量可以从总体的平均数与标准差两个角度来衡量.总体的平均数与内径标准尺寸25.00mm的差异在时质量低,差异小时质量高;当总体的平均数与标准尺寸很接近时,总体的标准差小的时候质量高,标准差大的时候质量低.这样比较两人的生产质量只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可.但是这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样体数据,然后比较这两个样本的平均数,标准差,以此作为两个总体之间的估计值.,解:用计算器计算可得:,

    注意事项

    本文(《用样本的数字特征估计总体的数字特征.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开