《用函数观点看一元二次方程》课件.ppt
用函数观点看 一元二次方程,我们知道:代数式b2-4ac对于方程的根起着关键的作用.,一元二次方程根的情况与b-4ac的关系,问题1:如图,以 40 m/s的速度将小球沿与地面成 30度角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h(单位:m)与飞行时间 t(单位:s)之间具有关系:h=20 t 5 t2 考虑下列问题:(1)球的飞行高度能否达到 15 m?若能,需要多少时间?(2)球的飞行高度能否达到 20 m?若能,需要多少时间?(3)球的飞行高度能否达到 20.5 m?若能,需要多少时间?(4)球从飞出到落地要用多少时间?,解:(1)解方程 15=20t-5t t-4t+3=0 t=1,t=3.当球飞行1s和2s时,它的高度为15m。,?,h,t,(2)解方程 20=20t-5t t-4t+4=0 t=t=2.当球飞行2s时,它的高度为20m。,(4)解方程 0=20t-5t t-4t=0 t=0,t=4.当球飞行0s和4s时,它的高度为0m,即0s飞出,4s时落回地面。,(3)解方程 20.5=20t-5t t-4t+4.1=0(-4)-4*4.10,方程无实数根,(2、20),例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.,就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0,就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.,结论:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),观察:下列二次函数的图象与x轴有公共点吗?如果有,公共点横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你得出相应的一元二次方程的解吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?,y=x-6x+9,Y=x+x-2,Y=x-x+1,x,y,?,(1)设y=0得x2+x-2=0 x1=1,x2=-2抛物线y=x2+x-2与x轴有两个公共点,公共点的横坐标分别是1和-2,当x取公共的的横坐标的值时,函数的值为0.,(2)设y=0得x2-6x+9=0 x1=x2=3抛物线y=x2-6x+9与x轴有一个公共点,公共点的横坐标是3当x取公共点的横坐标的值时,函数的值为0.,(3)设y=0得x2-x+1=0b2-4ac=(-1)2-4*1*1=-30方程x2-x+1=0没有实数根抛物线y=x2-x+1与x轴没有公共点,Y=x+x-2,Y=x-x+1,y=x-6x+9,x,y,(-2、0),(1、0),有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac=0,没有交点,没有实数根,b2-4ac 0,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?,归纳:,二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点,二次函数与一元二次方程,b2 4ac 0,b2 4ac=0,b2 4ac 0,若抛物线y=ax2+bx+c与x轴有交点,则,b2 4ac,0,0,=0,0,O,X,Y,二次函数y=ax2+bx+c的图象和x轴交点,与x轴有两个不同的交点(x1,0)(x2,0),有两个不同的解x=x1,x=x2,b2-4ac0,与x轴有唯一个交点,有两个相等的解x1=x2=,b2-4ac=0,与x轴没有交点,没有实数根,b2-4ac0,例,方法:(1)先作出图象;(2)写出交点的坐标;(-1.3、0)、(2.3、0)(3)得出方程的解.x=-1.3,x=2.3。,利用二次函数的图象求方程x2-x-3=0的实数根(精确到0.1).,?,x,y,用你学过的一元二次方程的解法来解,准确答案是什么?,基础练习:,1.不与x轴相交的抛物线是()A y=2x2 3 B y=-2 x2+3 C y=-x2 3x D y=-2(x+1)2-3,2.若抛物线y=ax2+bx+c,当 a0,c0时,图象与x轴交点情况是()A 无交点 B 只有一个交点 C 有两个交点 D不能确定,D,C,3、已知二次函数y=ax+bx+c的图象如图所示,则一元二次方程ax+bx+c=0的解是.,X,Y,0,5,2,2,4、若抛物线y=ax2+bx+c,当 a0,c0时,图象与x轴交点情况是()A 无交点 B 只有一个交点 C 有两个交点 D不能确定,C,X1=0,x2=5,知识巩固:,1.抛物线y=2x2-3x-5 与y轴交于点,与x轴交于点.,2.一元二次方程 3 x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3 x2+x-10与x轴的交点坐标是.,归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),(0,-5),(5/2,0)(-1,0),(-2,0)(5/3,0),3.如图,抛物线y=ax2+bx+c的对称轴是直线 x=-1,由图象知,关于x的方程ax2+bx+c=0的两个根分别是x1=1.3,x2=,-3.3,x,A,1.3,.,思考:已知抛物线y=x2+mx+m 2 求证:无论 m取何值,抛物线总与x轴有两个交点.,冲击中考:,1.若抛物线 y=x2+bx+c 的顶点在第一象限,则方程 x2+bx+c=0 的根的情况是.,2.直线 y=2x+1 与抛物线 y=x2+4x+3 有个交点.,无解,无,亮出你的风采,?,5、已知二次函数y=x2-mx-m2(1)求证:对于任意实数m,该二次函数的图像与x轴总有公共点;(2)该二次函数的图像与x轴有两个公共点A、B,且A点坐标为(1、0),求B点坐标。,小结:,本节课你有什么收获?,谢谢大家!,