湖大噪声控制工程讲义02噪声控制技术.docx
第二篇噪声控制技术噪声按传播途径可分为固体声、气体声、液体声,但在噪声控制中主要涉及到气体声与固体声,特别是气体声。噪声控制的基本程序是从声源调查入手,通过传播途径分析、降噪量确定等一系列步骤再选定最佳方案,最后对噪声控制工程进行评价。本篇主要讲述声学控制技术。噪声控制的基本程序框图如下图所示:第一章吸声和室内声场1.1 室内声学的一些基本知识1.1.1 室内声场和扩散声场声在室内声场的传播规律要比自由声场复杂得多,除了声源发出的声音构成直达声场外,还存在室内壁面和各类物体、包括人员产生的反射声场。许多噪声控制问题,往往涉及的是室内声源形成的室内声场。解决这一类问题必须了解室内声学的一些基本知识。1 .室内声场为便于研究,通常把房间内的声场分解成两部分:从声源直接到达受声的直达声形成的声场叫直达声场:经过房间壁面一次或多次反射后到达受声点的反射形成的声场叫混响声场由于壁面的声学性质不可能处处均匀,房间形状一般也不规则,室内人和物对声音的反射现象更是十分复杂,声音经过多次反射,室内声场中声音的传播规律和露天半自由声场强烈地依赖于房间的大小和房内各个表面的反射性质。2 .扩散声场扩散声场是指有声源的房间内,声能量密度处处相等,任何一点上,从各个方向传来的声波几率都相等的声场。在这种理想化的声场中,声波的相位是无规则的。一般情况下,对于所有内壁面均光滑、坚硬,并且天花板、四壁为一定不规则形状的大房间,声源在室内产生的声场非常接近扩散声场。3 .平均自由程声波在房间内两次相邻反射间的路程称作自由程,对于一个房间,自由程的平均值叫平均自由程。理论和试验证明,在扩散声场中,平均自由程与房间形状、声源位置无关,可用下式表示:d=4VS,式中d为平均自由程,单位为米;V为房间容积,S为房间内表面总面积。当声速为C时,声波传播一个自由程所需时间T为:=dc=4VcS,故单位时间内平均反射次数n为:n=l=cS4V1.1.2 平均吸声系数与室内声音衰减1 .平均吸声系数声波在室内碰到壁面(包括天花板与地板)时,一部分入射声波要被壁面吸收,其他部分发生反射。被壁面吸收的能量与入射能量的比值称为壁面的吸声系数怯。在扩散声场中,声能向各方向的传递几率相同,因此吸声系数应是对所有入射角的平均结果。可用下式表示:YSiiCSa+a=母一二o平均吸声系数实际上表示房间壁面单位面积的平均吸声能JsiS+S?+i=l力,也称单位面积的平均吸声量。由于反射声的存在,同样声源条件,室内声场要远高于自由声场。2 .室内声音的衰减及混响、混响时间的计算当声源开始向室内辐射声能时,声波在室内空间传播,当遇到壁面时,部分声能被吸收,部分被反射;在声波的继续传播中多次被吸收和反射,在空间就形成了一定的声能密度分布。随着声源不断供给能量,室内声能密度将随时间而增加,这就是室内声能的增长过程。4wf-竺C可用下式表示:D(t)=1-e4vCAlJ当声场处于稳态时,若声源突然停止发声。室内受声点上的声能并不立即消失,而要有一个过程。首先是直达声消失,反射声将继续下去。每反射一次,声能吸收一部分,因此,室内声能密度逐渐减弱,直到完全消失,这一过程称为“混响过程”或“交混回响”,TSA、4WI用下式表示:D(t)=e4v,由上式可见,在衰减过程中,D(t)随t的增加而减小。室cA内总吸声量A越大,衰减越快,房间容积V越大,衰减越慢。1.1.3扩散声场中的声能密度和声压级1 .直达声场设点声源的声功率是W,在距点声源r处,直达声的声强为:Id=平,式中Q为4r指向性因子。据I=p2pc,D=p2pc?得距点声源r处直达声的声压及声能密度分别为:P;=PCId=竽rDd=国=篝,相应的声压级为LPd=LW+104rpc-4rc4r)2 .混响声场在混响声场中,单位时间声源向室内贡献的混响声为W(Ia),设混响声能密度为Dr,则总混响声能为DN,每反射一次,吸收DrVa,每秒反射cS4V次,则单位时间吸收的混响声能为DVacS/4v,当单位时间声源贡献的混响声能与被吸收的混响声能相等时,达到稳态,即:W(l-a)=DrVacS4v,因此,达到稳态时,室内的混响声能密度为:4w(>a),设房间常数R=包,由此得到,混响声场中的声压p:=生空,,cSa1-arR相应的声压级为LPr=LW+10lg1O3 .总声场把直达声场和混响声场叠加,就得到总声场。总声场地的声能密度D为:总声场的声压平方值为p2=p;+p;=PCWj土+百<4rR)总声场的声压级为Ll)=LW+101g-+-(4rR)从上式可看出,由于声源的声功率级是给定的,因此房间中各处的声压级的相对变化就由右式第二项IOlg(Q4r2+4R)决定。当房间的壁面为全反射时,瓦为0,房间常数也为0,房间内声场主要为混响声场;当瓦为1,房间常数R为无穷大,房间内只有直达声,类似于自由声场。对于一般的房间,总是介于上述两种情况之间,房间常数大致在几十到几行之间。4.混响半径由上式可知,在声源的声功率级为定值时,房间内的声压级由受声点到声源距离r和房间常数R决定。当受声点离声源很近时,Q4r2远大于4/R,室内声场以直达声为主,混响声可以忽略;当受声点离声源很远时,Q4r2远小于4/R,室内声场以混响声为主直达声可以忽略,这声压级与距离无关;当Q4r2=4R时,直达声与混响声的声能相等,这时候的距离!称为临界半径,记为电几=0.14而记,当Q=I时的临界半径又称为混响半径。因为吸声降噪只对混响声起作用,当受声点与声源的距离小于临界半径时,吸声处理对该点的降噪效果不大;反之,当受声点离声源的距离大大超过临界半径时,吸声处理才有明显的效果。1.1.4混响和混响时间的计算1 .混响通常将一次与多次反射声的叠加称为混响,在混响声场中,由于4R>>Q4r,贝IJ混响声场中的声压级为LP=LW+10Ig(4/R)或LP=LW10IgR+6。例题:某机器其指向特性为I,在2000Hz倍频中声功率级为120dB(A),机器在一小房间内运转,此房间在2000Hz倍频带中的房间常数为9.29n°求:(1) 在该混响声场中的声压级;(2) 高于混响声声压级IdB(A)的空间点距机器多远?解:(1)由Lp=Lw-101gR+6得LP=I20-101g929+6=116dB(2)由LP=LW+10Ig(W+、)再依已知条件对唯一的未知数r求解,得1/2r=Q代入已知条件求得r=1.06米4l0(Lp-Lj10-4ILrJ.2 .混响时间混响的理论是赛宾在1900年提出的,混响时间的定量计算,迄今为止在厅堂音质设计中仍是重要的音质参量,虽然后来有几位声学专家导出了另外的混响时间的理论公式,但在实际工程中仍应用赛宾的公式。当室内声场达到稳态后,声源突然停止发声,室内声能密度衰减到原来的百万之一,即声压级衰减60dB所需要的时间,记作T,单位为秒。计算公式为:T60="I6"=°J,V式中V一房间容积,m3;A-室内总吸声量,m2,A=So适用条ASa件:室内声音频率低于2000Hz,a<0.21.1.5吸声降噪量在混响声场中,改变房间常数可改变室内某点的声压级,设Ri、R2分别为室内设置吸声装置前后的房间常数,则距声源中心r处相应的声压级Lpi、Lp2分别为:Lp1=Lw÷10lg-%+Lp2=Lw÷101gf-÷-14rR1)(4rR2J吸声前后的声压级之差,即为吸声降噪量,为:Ln=Lnl -L0 =IOIg PPlPZO.H4rr2R2当受声点离声源很近,即在混响半径以内的位置上,Q4r2远大于4/R时,ALP的值很小,也就是说在靠近噪声源的地方,声压级的贡献以直达声为主,吸声装置只能降低混响声的声压级,所以吸声降噪的方法对靠近声源的位置,其降噪量是不大的。对于离声源较远的受声点,即处于混响半径以外的区域,如果Q4r2远小于4/R,且吸声处理前后的面积不变的条件,则上式可简化为:R=Iolg坛=IOlg:一)昌Rl0a2)1此式适用于远离声源处的吸声降噪时的估算,对于一般室内稳态声场,如工厂厂房,都是破及混凝土砌墙、水泥地面与天花板,吸声系数都很少,因此有瓦京2远小于心或瓦2,则上式又可简化为:L=IOlg-,一般的室内吸声降噪处理可用此式计算,利用此式%的困难在于求取平均吸声系数麻烦,利用吸声系数和混响时间的关系,上式又可简化为ALP=K)Ign,式中Tl和T2分别为吸声处理前后的混响时间,由于混响时间可以用专门*T,2的仪器测得,所以用上式计算吸声降噪时,就免降了计算吸声系数的麻烦和不准确。例题:某房间几何尺寸为25mX10mX4m,室内中央设置一无指向性声源,测得】OoOHZ时室内混响时间为2秒,距声源IOm的接收点处该频率的声压级为87dB,仿拟彩吸声处理,使该噪声降为81dB。试问该房间IOOOHz的混响时间降为多少?并估算室内应达到的平均吸声系数。解:(1)依题意,噪声降低量为AL=LDl-LM=87-81=6dBP1"由ALP=I(Hg得T?=鼻=焉=05(s)%K)而10JE0.161V0.161V句(2) 由=-=-得ASa_0.161V0.161×25×10×4”2ST2(25×10+25×4+10×4)×2×0.5-,1.2吸声材料一般将能够吸收较多声能的材料称为吸声材料,将能够吸收较多声能的结构称为吸声结构。吸声处理可使一般室内噪声降低约为3-5dB,使混响声很重的车间降噪6-10dB.在隔声和消声等其他噪声处理技术中,吸声材料或吸声结构也得到广泛应用,所以吸声是一种最基本的降低噪声的技术措施。1.2.1 吸声基本知识1 .吸声系数a(画图说明)吸声系数是指材料吸收的声能与入射到材料上的总声能之比,可用吸声系数来描述吸声EE-E材料或吸声结构的吸声特性,计算式为:a=U=r=l,式中Ei-入射声能;EiEiEl被材料或结构吸收的声能;EL被材料或结构反射的声能;r反射系数。由上式可见,当入射声波被完全反射时,a=0,表示无吸声作用;当入射声波完全没有被反射时,a=1,表示完全吸收;一般材料的吸声系数a都在0和1之间,即0<a<l,a值越大,表示吸声性能越好,它是目前表征吸声性能最常用的参数。吸声系数是频率的函数,同一种材料,对于不同的频率,具有不同的吸声系数。通常当吸声系数0.2时,材料才能被称为吸声材料。2 .吸声量吸声量也称为等效吸声面积,其数值为吸声系数与吸声面积的乘积,可用下式表示:A=S式中A吸声量,n;a某频率声波的吸声系数;S吸声面积,m2o若房间中有敞开的窗,而且其边长远大于声波的波长,则入射到窗口上的声能几乎全部传到室外,不再有声能反射回来。这敞开的窗,即相当于吸声系数为1的吸声材料。房间中的其他物体如家具、人等等,也会吸收声能,而这些物体并不是房间壁面的一部分。因此,房间总的吸声量A可以表示为:A=XaiSi+XAi,式中第一项为所有壁面吸声量的总和,第二项是室内各个物体吸声量的总和。3 .吸声材料与吸声结构的选用要求在选择吸声材料与吸声结构时,要考虑以下因素:(1)在尽可能宽的频带范围内对吸声系数要求高,吸声性能要长期稳定可靠;(2)有一定的软科学强度,不易破碎、耐用、不易老化;(3) 表面适于装饰,易于清洗;(4) 防潮、防火、耐腐蚀、防蛀、不易发霉、不易燃烧、不腐蚀构架;(5)质轻,容重小,易于更换、维修;(6) 无特殊气味、无损于人体健康,符合环境保护要求;(7) 价格便宜。4.吸声系数的测量测量的方法有混响室方法和驻波管方法。我们只要明白有这两种方法就行,至于怎样测量,你们自己书.1.2.2吸声材料的分类教材上把吸声结构也归为吸声材料,我认为不妥,吸声结构是利用吸声材料经过一定的加工形成了一定的结构。根据吸声机理可以把吸声材料分为多孔吸声材料、柔性吸声材料和膜状吸声材料三大类。(一).多孔吸声材料在材料表面和内部有无数的均匀颁的微细孔或微间隙,这些孔隙互相贯通并且向外张开,使声波易于进入微孔或微间隙内,这种吸声材料称作多孔吸声材料。1 .吸声机理多孔吸声材料的构造特征是在材料中有许多微小的间隙和连续的孔洞,这些间隙和孔洞具有一定的通气性能。多孔吸声材料衰减声能有两个原因:一是当声波经过材料表面引起空隙内部空气振动时,空气与固体经络间产生相对运动。由于空气的粘滞性产生相应的粘滞阻力,使振动空气动能不断转化成为热能,从而使声波能量衰减;二是声波通过时发生空气绝热压缩升温,与多孔材料的热交换和热传导也衰减声能。2 .种类根据多孔吸声材料的形状,可以将多孔吸声材料分为泡沫型、纤维型、颗粒型三类。泡沫型材料的表面与内部皆有无数互相速通的微孔,其材质一般由聚氨脂泡沫塑料、微孔橡胶等制成。纤维型材料包括毛、木丝、甘蔗纤维、化纤维、玻璃棉、矿物棉、金属纤维等有机和无机纤维材料,其中的超细玻璃棉是最常用的一种多孔吸声材料,金属纤维是最新研制并得到应用的多孔吸声材料。颗粒状材料有膨胀珍珠岩、蛭石混凝土和多孔陶土。多孔吸声材料在使用时一般需要护面层保护,防止失散。护面层材料可以是玻璃丝布、金属丝网、纤维板等透声材料,内填以松散的厚度为5IOCm的多孔吸声材料。为防止松散的多孔材料下沉,常选用透声织物缝制成袋,再内填吸声材料。为保持固定几何形状并防止机械损伤,在材料间要加木筋条(木龙条)加固,材料外表面加穿孔罩面板保护。常用的护面板材为木质纤维板或薄塑料板。3 .吸声特性多孔吸声材料的吸声特性主要受入射声波(频率和入射角)和材料性质的影响,一般对高频声吸收效果好,低频声吸收效果较差。因为低频声波激发微孔内空气与筋络的相对运动少,磨擦损失少,因而声能损失少;而高频声容易使使之快速振动,从而消耗较多的声能,所以多孔吸声材料常用于高、中频噪声的吸收。多孔吸声材料的特性除与本身内在的特性有关外,还与材料的使用条件有关,如单位体积重量、厚度以及构成吸声板的结构形式,使用时的温度、湿度等。4 .吸声特性的影响因素影响多孔材料的吸声特性的主要因素是材料的孔隙率、空气流阻和结构因子。其中以空气流阻最为重要。空气流阻是指在稳定气流状态下,吸声材料中压力梯度一气流线速度之比,它反映了空气通过多孔材料时阻力大小。单位厚度材料的流阻,称为比流阻。a)密度改变材料的密度,等于改变了材料的空隙率(包括微孔数目与尺寸)和流阻。因此对于某一种多孔吸声材料都有一最佳值。b)厚度当多孔吸声材料的厚度增加时,对低频声的吸收增加,对高频声影响不大。对一定的多孔材料,厚度增加一倍,吸声频率特性曲线的峰值向低频方向近似移动一个倍频程。在实用中,考虑经济及制作的方便,对于中、高频噪声,一般可采用25cm厚的常规成形吸声板;对低频吸声要求较高时,则采用5IoCm厚。c)背后空气层若在材料层与刚性壁之间留一定距离的空腔,可以改善对低频声的吸声性能,作用相当于增加了多孔材料的厚度,且更为经济,通常空腔增厚,对吸收低频声有利。当腔深近似于入射声波的1/4波长时,吸声系数最大,当腔深为1/2波长或其敕倍数时,吸声系数最小。实用时,过厚,常取腔深为5-10cm.d)温、湿度的影响使用过程中温度升高会使材料的吸声性能高频向高频方向移动,温度降低向低频方向移动。所以在使用时,应注意该材料的温度适用范围。温度增大会使孔隙内吸水时增加,堵塞材料上的细孔,使吸声系数上降,而且是先从高频开始,因此对于湿度较大的车间或地下建筑的吸声处理,应选用吸水量较小的耐潮多孔材料,如防潮超细玻璃棉毡与矿棉吸声板等。e)气流的影响当将多孔吸声材料用于通风管道和消声器内时,气流易吹散多孔材料,影响吸声效果,甚至飞散的材料会堵塞管道,损坏风机叶片,造成事故,应根据气流速度大小选择一层或多层不同的护面层。(二)柔性吸声材料柔性吸声材料内部一般具有许多微小而独立的气孔,基本上没有通气性能,但却具有一定的弹性。柔性吸声材料的吸声机理是,当声波入射到柔性吸声材料的表面时,很难透入到材料的内部,柔性吸声材料只作整体的振动,因材料内部存在一定的磨擦而消耗了声能,引起声波的衰减。(三)板状与膜状吸声材料板状材料是将胶合板、硬质板、石膏板、石棉水泥板等板材固定在框架上,并在其背后设置空气层°膜状材料是指聚乙烯薄膜或几乎没有通气性能的帆布等材料,由于它们的刚度很小,在受拉情况下处于张紧状态且具有一定的弹性。两种材料的吸声机理很相似,当入射声波的频率同材料的固有频率一致时,两种材料都会发生共振,并引起内部磨擦而消耗声能。板状或膜状材料所构成的吸声结构可用于吸收低频噪声,其共振频率为=-式中fL共振频率,Hz同PS板或膜的密度kgm2D-板或膜后的空气层厚度,cm。13吸声结构利用共振原理做成的吸声结构叫做共振吸声结构。它基本分为三种:薄板共振吸声结构、穿孔板共振吸声结构、微穿孔板共振吸声结构。主要适用于对中、低频噪声的吸收。1.3.1薄板共振吸声结构1 .构造将薄的塑料、金属或胶合板等材料的周边固定在框架(称为龙骨)上,并将框架牢牢地与刚性板壁相结合,这种由薄板与板后的封闭空气层构成的系统就称为薄板共振吸声结构。(图见李家华66面)。2 .吸声机理薄板共振吸声结构实际近似于一个弹簧和质量块振动系统。薄板相当于质量块,板后的空气层相当于弹簧,当声波入射到薄板上,使其受激振动后,由于板后空气层的弹性、板本身具有的劲度与质量,薄板就产生振动,发生弯曲变形,因为板的内阻及板与龙骨间的磨擦,便将振动的能量转化为热能,从而消耗声能。当入射声波的频率与板系统的固有频率相同时,便发生共振,板的弯曲变形量大,振动最剧烈,声能也就消耗最多。3 .吸声特性及其改善弹簧振子的固有频率由下式计算:L=?后,式中fo为固有频率,K为弹簧刚度,M为振动物体的质量。薄板振动系统的劲度决定于板、空气层以及安装的状况。由声学原理可以导出薄板吸声结构的共振频率的近似计算式:f0=-式中C2Vmh闹为声速、PO空气密度、m为板的面密度、h为板后空气层厚度。单位面积板材所具有的质量称作面密度:m=板材与二警板“'密度=tp,式中t为板厚(m),P为板密度(kg/n?)。板材长X宽由上式可知,薄板共振结构的共振频率主要取决于板的面密度与背后空气层的厚度,增大m或h,均可使fo下降。衫中,薄板厚度通常取3-6mm,空气层厚度一般取3-10cm,共振频率多在80-300Hz之间,故通常用于低频吸声。若在薄板与龙骨的交接处放置增加结构阻尼的软材料,如海棉条、毛毯等,或在空腔中适当悬挂矿棉、玻璃棉毯笺袁声材料,可使薄板共振结构的吸声性能得到明显改善。1.3.2穿孔板共振吸声结构在薄板上穿以小孔,在其后与刚性壁之间留一定深度的空腔所组成的吸声结构称为穿孔板共振吸声结构。按照薄板上穿孔的数目分为单孔和多孔共振吸声结构。1 .单孔共振吸声结构A)结构单孔共振吸声结构又称作“亥姆霍兹”共振吸声器或单腔共振吸声器。它是一个封闭的空腔,在腔壁上开一个小孔与外部空气相通的结构(图6-5(b)(c),可用陶土、燥渣等烧制或水泥、石膏浇注而成。B)吸声机理单孔共振吸声结构也可比拟为一个弹簧与质量块组成的简单振动系统,开孔孔颈中的空气柱很短,可视为不可压缩的流体,比拟为振动系统的质量M,声学上称为声质量;有空气的空腔比作弹簧K,能抗拒外来声波的压力,称为声顺;当声波入射时,孔颈中的气柱体在声波的作用下便象活塞一样做往亚运动,与颈壁发生磨擦使声能转变为热能而损耗,这相当于机械振动的磨擦阻尼,声学上称为声阻。声波传到共振器时,在声波的作用下激发颈中的空气柱往复运动,在共振器的固有频率与外界声波频率一致时发生共振,这时颈中空气柱的振幅最大并且振速达到最大值,因而阻尼最大,消耗声能也就最多,从而得到有效的声吸收。C)吸声特性“亥姆霍兹”共振器的使用条件必须是空腔小孔的尺寸比空腔尺寸小得多,并且外来声波波长大于空腔尺寸。这种吸声结构的特点是吸收低频噪声并且吸收频带较窄(即频率选择强),因此多用在有明显音调的低频噪声场合。若在颈口下放置一些诸如玻璃棉之类的多孔材料,或加贴一薄层尼龙布等透声织物,可以增加颈口部分的磨擦阻力,增宽吸声频带。单腔共振体的共振频率一般由下式求出:f0=J式中S为孔颈开口面积,C为2Vvik声速,一般取340ms;V为空腔容积;Ik为小孔有效颈长,m;若小孔为圆形:I=l+-dl+O.8d,式中1为颈的实际长度(即板厚度)米,d为颈口的直径米42 .多孔穿孔板共振吸声结构A)构造与吸声机理多孔穿孔板共振吸声结构通常简称为穿孔板共振吸声结构,它是在板材上,以一定的孔径和穿孔率打上孔,背后留有一定厚度的空气层,图见教材130面。这种吸声结构实际上可以看作是由单腔共振吸声结构的并联而成。穿孔板共振吸声结构的共振频率是:f0=fjE式中h为板后空气层厚度,也是空腔的深度,P为穿孔率,即穿孔面积与总面积之比,圆孔正方形排列时,P=d24B2;圆孔等边三角形排列时,P=d220B?,其中d为孔径,B为孔中心距。当空腔内壁贴多孔材料时Ik=I+1.2d。由上两式可看出,板的穿孔面积越大,吸声的频率越高;空腔越深或板越厚,吸声的频率越低,一般穿孔板共振吸声结构主要用于吸收低、中频噪声的峰值,吸声系数约为0.40.7。设在fo处的最大吸声系数为,则在fo附近能保持吸声系数为a/2的频带宽度Af为吸声带宽。穿孔板吸声频带较窄,通常仅几十赫到二、三百赫。吸声系数高于0.5的频带宽度Af可由下式计算:Af=4F"h,式中0是与共振频率fo相对应的波长;h为空腔深(板0后的空气层厚度)。由上式可知,穿孔板共振吸声结构的Af与腔深h有很大的关系,而腔深又影响共振频率的大小,故需合理选择腔深。工程上一般取板厚2-5mm,孔径2-4mm,穿孔率空腔深以1025Cm为宜。为增大吸声系数与提高吸声带宽,可采取以下办法:I .穿孔板孔径取偏小值,以提高孔内阻尼;II .在穿孔板后蒙一薄层玻璃丝布等透声纺织品,以增加孔颈磨擦;HL在穿孔板后面的空腔中填放一层多孔吸声材料,材料距板的距离视空腔深度而定,腔很浅时,可贴紧穿孔板;IV .组合几种不同尺寸的共振吸声结构,分别吸收一小段频带,使总的吸声频带变宽。V .采用不同穿孔率,不同腔深的多层穿孔板结构。例题1.3.3 微穿孔吸声结构为克服穿孔板共振吸声结构吸声频带较窄的缺点,我国著名声学家马大猷教授于60年代研制成了金属微穿孔吸声结构。A)结构在厚度Imm的金属薄板上,钻出许多孔径小于Imm的小孔(穿孔率为1%一4%),将这种孔小而密的薄板固定在刚性壁面上,并在板后留以适当深度的深腔,便组成了微穿孔板吸声结构。薄板常用铝板或钢板制做,因其板特别薄与孔特别小,为与一般穿孔板共振吸声结构相区别,故称作微穿孔板吸声结构。它有单层、双层与多层之分。B)吸声机理与吸声特性微穿孔板吸声结构实质上仍属于共振吸声结构。因此吸声机理也相同,利用空气柱在小孔中的来回磨擦消耗声能,用腔深来控制吸声峰值的共振频率,腔愈深,共振频率愈低,但因为其板薄孔细,与普通穿孔板比较,声阻显著增加,声质量显著减小,因此明显地提高了吸声系数,增宽了吸声频带宽度。与穿孔板比较,微穿孔板的吸声系数得到明显的提高,是一种良好的宽频吸声结构,特别适用于高温、高湿和高速气流等条件下,吸声性能不受高速气流影响。微穿孔板吸声结构的吸声系数有的可达0.9以上,吸声频带可达45个倍频程以上。在实际应用中,可以根据有关图表进行设计微穿孔板,不必进行复杂的计算,它的缺点是加工费用高、孔小易于堵塞,适宜在清洁环境中使用。1.3.4 薄塑盒式吸声体第二章隔声2.1 隔声的基本知识2.1.1 几个基本概念1 .声音在室内和户外传播的途径:声音可以通过空气或固体传播,因此,对于室内任何接受位置上均包含了两种传声的结果,辩明传声的主要方式对正确采取隔声措施有很大帮助,对于空气传声,一般都采取重而密实的隔声构件进行声音的隔离;而以固体传声为主,则一般采取弹性隔离或增加阻尼层等措施进行声音的隔离。2 .隔声:用构件将噪声源和接收者分开,阻断空气声的传播,从而达到降噪目的的措施称作隔声,具体的形式有隔声墙、隔声罩、隔声间和声屏障等。3 .隔声的原理:声波在通过空气的传播途径中,碰到一匀质屏蔽物时,由于两分界面阻抗的改变,使部分声能被屏蔽物反射回去,一部分被屏蔽物吸收,只有一部分声能可以透过屏蔽物传到中一个空间去,显然,透射声能仅是入射声能的一部分,因此,设置适当的屏蔽物便可以大部分声能反射回去,从而降低噪声的传播。具有隔声能力的屏蔽物称作隔声构件或隔声结构,如砖砌的隔墙、水泥砌块墙、隔声罩体等等。2.1.2 隔声的评价L隔声量A)透射系数:将透射声强h与入射声强Ii之比定义为透射系数,即=L,一般隔声结构Ii的透射系数通常是指无规入射时各入射角透射系数的平均值。透射系数越小,表示透声性能越差,隔声性能越好。B)隔声量:隔声量的定义为墙或间壁一面的入射声功率级与另一面的透射声功率级之差。1I.p.隔声量等于透射系数的倒数取以10为底的对数,TL=K)Ig=101g,=20Ig比,它的LP.单位为dB,它又叫传声损失。O平均隔声量:隔声量是频率的函数,同一隔声结构,不同的频率具有不同的隔声量。在工程应用中,通常将中心频率为125Hz至4000Hz的6个倍频程或100至3150Hz的16个1/3倍频程的隔声量作算术平均,叫平均隔声量。2.隔声指数2.1.3插入损失插入损失定义为:离声源一定距离某处测得的隔声结构设置前的声功率级Lwl和设置后的声功率级Lw2之差值,记作IL,gp:IL=Ui-U2O插入损失通常在现场用来评价隔声罩、隔声屏障等隔声结构的隔声效果。3.2单层匀质墙的隔声性能隔声技术中,常把板状或墙状的隔声构件称为隔板或隔墙,简称墙。仅有一层隔板的称单层墙,有两层或多层,层间有空气或其他材料的,称为双层墙或多层墙。2.2.1 隔声的质量定律L内容:它描述了隔声构件的隔声量取决于入射声的频率和隔声构件的面密度,对固定频率的声音,隔声量随着面密度的增加而增加,面密度增加1倍,隔声量增加6dB;对于固定面密度板材,隔声量也随着入射声波的频率的增加而增加,频率增加I倍,隔声量增加6dBo用公式来表示:TL=IOIgl+f-1,对于一般固体材料,如砖墙、木板、钢板、玻(2PlCJ璃等,%pcAL因此隔声量可以写成:TL=20Ig,将=2f,空气中的PIC产400代入则上式也可以表示成:TL=201gm+201gf-42.5o以上为声波垂直入射的理论计算结果,当声波无规入射时,则应对所有入射角求平均,其理论计算相当复杂,通过大量实验获取经验公式,隔声量为:TL=I8.5Igmf-475实际上,无规入射声波对墙的入射角主要分布在0°-80°范围内,对此范围内的入射声波求平均,称为“场入射”隔声量,经计算近似为:TL=201gmf-47.5,TL=13.5m+14(m200kgm2)iTL=l61gm+8(m>200kgm2).j2.公式推导条件:画图说明,因为声波在空气中传播的途径上,当遇到墙状固体障碍物是地,由于空气与固体介质特性阻抗的差异,在两分层界面上将产生两次反射与透射。上述质量定律是以下列假设下及利用边界条件,即边界处声压连续,质点速度的法向分量连续,得出的。(1)声波垂直入射到墙上;(2)隔墙为单层匀质墙;(3)墙把空间分成两个半无限空间,而且墙的两侧均为通常状况下的空气;(4)墙为无限大,即不考虑边界的影响;(5)把墙自成一个质量系统,即不考虑墙的刚性、阻尼;(6)墙上各点以相同的速度振动。从透声系数定义及平面声波理论来推导的。2.2.2 单层匀质墙隔声的频率特性实践证明,单层匀质墙的隔声量与入射声波的频率关系很大,其变化规律如图所示,可分为四个区,劲度控制区、阻尼控制区,又称为共振区、质量控制区、吻合效应区。2.2.3 吻合效应1 .弯曲波声波在空气中传播时,只存在压缩波,即纵波,而声音在固体介质中传播时,固体质元既有纵向的弹性压缩,也有横向的弹性切变,两者结合作用,会在介质中产生一种曲波。设弯曲波的波长为b°2 .产生的条件(上课时以图来说明)对墙面上某一点,当入射波两个相邻同位相波陈面经过该点的时间,正好和弯曲波在墙内沿横向传播的周期相同时,即当b时声波对墙体的作用与墙体的弯曲波相吻合。bsin由于SinOWI,所以只有在,的情况下才能发生吻合效应。因一定构件的就是一定的,因此,发生吻合效应的频率就不是一个,而是符合f2cb的多个频率。3 .定义当入射声波满足声波吻合效应的条件时,则墙体的弯曲扰动达到极大值,此时,墙体振动向墙的另一侧辐射的声能也达到最大值,从而使隔声量大大降低。这种因声波入射角度造成的声波作用与隔墙中弯曲波传播速度相吻合而使隔声量降低的现象,叫做吻合效应在。4.吻合效应的频率与临界频率固体隔墙中弯曲波长由固体本身的弹性性质所决定,因此引起吻合效应的条件由声波的频率与入射角决定。产生吻合效应的频率fc为=由3得知,当二l,时相应的频率fco是产生吻合效应的最低频率,称为吻合效应的临界频率,用公式表5 .吻合效应的防止隔声构件的吻合效应发生在对人耳不敏感的频率段,可以减少对隔声构件性能的不利影响。一般砖墙、混凝土墙厚度都很大,吻合频率都在低频段且不太明显。对于嫉顺而轻薄的隔声构件,如金属板,木板等,吻合频率都出现在高频段且比较明显。在噪声控制工程中,通过选择轻型构件吻合频率高于人耳敏感频率,或采取增加阻尼提高吻合效应段隔声量的办法,减轻吻合效应的影响。2.3多层墙的隔声2.3.1 双层墙的隔声实践与理论证明,单纯依靠增加结构的重量来提高隔声效果既浪费材料,隔声效果也不理想。若在两层墙间夹以一定厚度的空气层,其隔声效果会优于单层实心结构,从而突破质量定律的限制。我们把两层匀质墙与中间所夹一定厚度的空气层所组成的结构,称作双层墙。1.隔声的原理(画图来说明)当声波透过第1层墙时,由于墙外及夹层中空气与墙板特性阻抗的差异,造成声波的两次反射,形成衰减,并且由于空气层的弹性和附加吸收作用,使振动的能量衰减较大,然后再传给第2层墙,又发生声波的两次反射,使透射声能再次减小,因而总的透射损失更多。2.隔声特性A)当入射声波频率(D低于共振频率时,TL=IOlg1+1I与前面单层墙的隔声量比较得出,上式就是单位质量为2mIPOCJ的单层墙的质量定律,也就是说,这时候的双层墙的隔声效果,相当于把两个单层隔墙合并在一起,中间没有空气层一样,说明隔声性能没有改善。B)当f>fo到波长接近空气层厚度时TL=IOIgf1(2kD)2=TL1÷TL0+20lg(2kD)WJ相当于两个隔墙单独的隔声量之和再加上一个值。这表明,如果把一个隔层一分为二,分开一定距离时,总的隔声量将大为增加。C)当f大于与空气层厚度相当波长的频率段时,不能满足kD<<l,当D是半波长整数倍时,TL=IOlg1m+ IPoC )当D为1/4波长的奇数倍时,TL=201g2工12POCJ3 .共振频率为了减轻双层墙吻合效应对隔声性能的影响,一般两层墙不选相同厚度或相同面密度,这样可以使两层墙具有不同的吻合频率,互相错开,吻合效应的影响明显降低。考虑双层墙不同的空气层厚度和面密度,法向入射时的共振频率fo,用公式表示为fo=£Q-L+-L式中mlm2为双层墙的面密度,kg12;D为空气的厚度,m;PO为2VDImim2,空气在常温下的密度,p0=1.18kgm3o4 .隔声量的实际估算在工程应有用中,常用以下经验公式来估算双层结构的隔声量:TL=161g(m1+m2)+16Igf-30+TL平均隔声量估算的经验公式为:TL=161g(m+m2)+8+TL,(m+m?>200kgm2)TL=13.51g(m1+m2)+14+TL,(m+m2200kgm2)上两式中TL为空气层的附加隔声量。5 .声桥对双层墙的隔声性能影响我们在上面的讨论是假设双层墙之间没有固定连接。如果两层墙之间存在某种连接,部分声能可经声桥自一墙板传至另一墙板,使双层墙的隔声性能会明显降低。连接物在这里起的作用是在墙板之间传递振动,这种连接物就叫声桥。典型的声桥可以分成两类:刚性声桥,如双层墙之间的砖头和双层板之间的木龙骨;弹性声桥,如具有相当大弹性的钢龙骨。在实际问题中,人们更关心如何减轻声桥的不利影响,实践表明采取以下措施可以有交减轻声桥的影响:(1)设计和施工时尽可能减小声桥数量,在保证双墙的机械性能要求前提下尽可能少用龙骨等构件;(2)尽可能彩弹性构件,(3)在声桥与墙面之间最好插入适当的弹性材料或阻尼材料。6 .3.2多层复合墙的隔声在噪声控制工程中,常用轻质多层复合板,它是由几层面密度或性质不同的板材组成的复合隔声结构,通常是用金属或非金属的坚实薄板做护面层,内部覆盖阻尼材料,或填入多孔吸声材料,或空气层等组成。多层复合板的隔声性能较组成它的同等重量的单层或双层有明显的改善,这主要是由于:(1)分层材料的阻抗各不相同,使声波在各层界面上产生多次反射,阻抗相差越大,反射声能越多,透射能量就越小;(2)夹层材料的阻尼和吸声作用,致使声能衰减,并减弱共振与吻合效应;(3)使用厚度和材质不同的多层结构,可以错开共振与临界的吻合效应,改善共振区与吻合区的隔声低谷效应,因而总的透射声能大为减小。由理论计算多层复合墙的隔声量不仅复杂也难以准确,故一般通过实测求得。2.4隔声间在吵闹的环境中建造一个具有良好的隔声性能的小房间,供工作人员有一安静的环境,或者将多个强声源(或单台大型噪声源)置于上述房间中,以保护周围环境的安静,这些由隔声构件组成的具有良好隔声性能的房间统称为隔声间或隔声室。通常多用于对声源难作处理的情况。隔声间有封闭与半封闭之分。一般多用封闭式。隔声间除需要有足够隔声量的墙体外,还需设置具有一定隔声性能的门、窗或观察孔等,如果门、窗设计不好或孔隙漏声严重,都会大大影响隔声的效果。2.4.1 隔声间的降噪量隔声间通常包括隔声、吸声、消声器、阻尼和减振等几种噪声控制措施的综合治理装置,它是多种声学构件的组合,因此,衡量一个隔声间的效果,不能只看其中一个声学构件的降噪效果,而要看它的综合降噪指标。用于评价隔声间综合降噪效果的一个物理量是插入损失IL,它是被保护者所在处安装隔声间前后的声压级之差,即:AIL=L1-L2=TL+101g-STL为隔声间的平均隔声量,即:7T=10lgS,ZSJ(F。.也上式中S为第I个构件的面积,a?;TLi