偏振光实验报告概要.docx
实验1.验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、 图2所示: ”单色自然光 线偏光图1线偏光Pi图1中靠近光源的偏振片Pl为起偏器,设经过P后线偏振光振幅为A (图2所示),光强为I苻P与P夹角为9,因此经P后 00212的线偏振光振幅为A = A cos9,光强为I = A2 cos2 9= I cos2 9 ,此式为马吕斯定律。实验数据及图形:0153045607590105120135150165I5348. 538. 524. 512.12. 50. 24. 812. 5263849司180195210225240255270285300315330345I53.549.840.125.813.23.30. 44.814.125.43950.160实耳10T504030,数据正确。从图形中可E富2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按 )分解为寻常光(o光)和非常光(e光丢振动方向(或振i的振动频率和固定的相'位差(同波晶片的厚度成正比),若将它们投们具有相同影到同一方向,就能满足相干条件,实现偏振光的干涉。分振动面的干涉装置如图3所示,M和N是两个偏振片,C是 波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分 解为o光和e光,最后投影在N上,形成干涉。考虑特殊情况,当M±N时,即两个偏振片的透振方向垂直时,出射光强为:I =匕(sin2 20)(1 -cos8);当MN时,即两个偏振 4片的透振方向平行时,出射光强为:I = §(1 2sin29 cos29 + 2sin29 cos29 cos5)。其中。为波片光轴与M透振方向的夹角,6为o光和e光的总相位差(同波晶片的 厚度成正比)。改变。、6中的任何一个都可以改变屏幕上的光强。当6 二(2k+1)n(1/2 波片)时,cos6 =-1,I = L0sin 229,12出射光强最大,I = I(i _sin 229).2,出射光强最小;当6=(2k+1)n /2 ( 1/4 波片)时, cos 6 =0 ,I = 0 (sin 2 29 ), I = g (2 - sin 2 29 )。特别地,利用1/4波片我们还可以得到圆偏振光和椭圆偏振 光。当e =45度时,得到圆偏振光,此时让偏振片N旋转一周,屏 幕上光强不变。一般情况下,得到的是椭圆偏振光,让偏振片N 旋转一周,屏幕上的光斑“两明两暗”。实验结果:半波片实验数据表:转动36谯上消光次数|4|得出结论|半波片每转过90度消光:一次£ 动角度 15度3。度45度6。度|花度加。度A转动角妥 |叩度 成度您。度五折度易度1180度|得出结论廊波片转动一定角度后,桂偏器转动2倍的角度才能消光1/4波片实验数据:9囹角度 15度 3。度4 5度 6。度 花度 9。度光强变化现象2. 9->32. 5->3. 0->32. 48. 5->29. 8->8. 3->28. 4几乎想等11. 2->33. 9->11. 2->34. 54. 4->42. 9->4. 3->40. 91. 0->45. 1->1. 0->46. 01I结论椭圆偏振光 椭圆偏振光 圆偏振光 椭圆偏振光 椭圆偏振光 线偏振光结论:线偏振光通过1/4波片后可能变成圆偏振光,椭圆偏振光也有可能仍是线偏振光。实验3.旋光效应实验原理:线偏振光通过某些物质的溶液后,偏振光的振 动面将旋转一定的角度,这种现象称为旋光现象。旋转的角度 称为该物质的旋光度。通常用旋光仪来测量物质的旋光度。溶 液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、 溶液浓度、样品管长度、温度及光的波长等有关。当其它条件 均固定时,旋光度与溶液浓度C呈线性关系即0*(5-1)比例常数与物质旋光能力、溶剂性质、样品管长度、温度 及光的波长等有关,C为溶液的浓度。物质的旋光能力用比旋hl光度即旋光率来度量,旋光率用下式表示:入I - C(5-2)(5-2)式中,右上角的t表示实验时温度(单位:。C),是 指旋光仪采用的单色光源的波长(单位:nm),0为测得的旋 光度(o),l为样品管的长度(单位:dm),C为溶液浓度(单位: g/100mL)。由(5-2)式可知:偏振光的振动面是随着光在旋光物质中向前进行而逐渐 旋转的,因而振动面转过角度0透过的长度l成正比。振动 面转过的角度0不仅与透过的长度l成正比,而且还与溶液 浓度C成正比14。如果已知待测溶液浓度C和液柱长度1,只要测出旋光度 0就可以计算出旋光率。如果已知液柱长度为 1固定值,可 依次改变溶液的浓度C,就可以测得相应旋光度0。并作旋光 度与浓度的关系直线0C,从直线斜率、液桩长度1及溶液 浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性 溶液的旋光度0 ,确定溶液的浓度C。旋光性物质还有右旋和 左旋之分。当面对光射来方向观察,如果振动面按顺时针方向 旋转,则称右旋物质;如果振动面向逆时针方向旋转,称左旋 物质。测量葡萄糖水溶液的浓度将已经配置好的装有不同的容积克浓度(单位:g/100mL) 的葡萄糖。水溶液的样品管放到样品架上,测出不同浓度 C下 旋光度值。并同时记录测量环境温度和记录激光波长葡萄糖水溶液的浓度配制成 C。、C0/2、C0/4、C/8,0(纯 水,浓度为零),共5种试样,浓度C0取30%左右为宜。分别 将不用浓度溶液注入相同长度的样品试管中。测量不同浓度样 品的旋光度(多次测量取平均)。用最小二乘法对旋光度、溶液 浓度进行直线拟合(可以将C0作为1个单位考虑),计算出葡萄 糖的旋光率。也可以以溶液浓度为横坐标,旋光度为纵坐标, 绘出葡萄糖溶液的旋光直线,由此直线斜率代入公式(5-2), 求得葡萄糖的旋光率*00。数据记录及处理25光弹性试验是应用光学方法研究受力构件中应力分布情况的 ,在光测弹性仪上进行,先用具有双折射性能的透明材料制试验16成和实际构件形状相似的模型,受力后,以偏振光透过模型,由 于应力的存在,产生光的暂时双折射现象再透过分析镜后产生 光的干涉,在屏幕上显示出具有明暗条纹的映象,根据它即可推 算出构件内的应力分布情况,所以这种方法对形状复杂的构件尤 为适用。光弹性实验方法是一种光学的应力测量方法,因为测量是全 域性的,所以具有直观性强,能有效而准确地确定受力模型各点 的主应力差和主应力方向,并能计算出各点的主应力数值。尤其 对构件应力集中系数的确定,光弹性试验法显得特别方便和有效。 工程实际中有很多构件,例如工业中的各种机器零件,它们的形 状很不规则,载荷情况也很复杂,对这些构件的应力进行理论分 析有时非常困难,往往需要实验的方法来解决,光弹性试验就是 其中比较直观有效的一种解决方法。实验原理光弹性试验是应用光学方法研究受力构件中应力分布情况的 试验,在光测弹性仪上进行,先用具有双折射性能的透明材料制 成和实际构件形状相似的模型,受力后,以偏振光透过模型,由 于应力的存在,产生光的暂时双折射现象,再透过分析镜后产生 光的干涉,在屏幕上显示出具有明暗条纹的映象,根据它即可推 算出构件内的应力分布情况,所以这种方法对形状复杂的构件尤 为适用。图1光弹性试验的光学效应示意图如图1所示,自然光通过偏振器成为平面偏振光(在人1平面中), 平面偏振光垂直地射在模型上某一O点,如果模型未受力,则光线 通过后并无改变,但如果O点有应力,这时将出现暂时双折射现象, 如果图O点的二个主应力b 1和b 2方向已知,则平面偏振光通过受 力模型O点后,分解成二个与b 1及b 2方向一致的平面偏振光,二 者之间产生一光程差0,光程差与主应力差(b 1-b2)及模型厚 度t成正比,即:8 = kt (b 1 -b 2)式中k为光学常数,与模型材料及光的性质有关。分解了的二束光 线通过分析器后重新在88平面内振动,这样就产生光的于涉现象。 我们知道由分析器出来的光线强度兀 I - I sin 2(2以)sin2(兀8 / 人)其中入为光的波长,I为偏振器与模型间偏振光的强度,a为偏振 平面人1与主应力b 1的夹角。由上式可见,光强I为零时有以下四种 情况: 1=0,这与实际情况不符,因为只有在无光源时I才会是零。 6 =0,由公式8= kt91 b2)可知(b 1-b2)=0,即b 1 = b2,符合这些条件的点称为各向同性点。如果b 1= b 2=0则称为零 应力点,这种点在模型上皆为黑点(因为光强等于零),例如 纯弯曲梁上中性轴上各点b 1= b 2=0,故模型中性层处为一条 黑线。 sin(2a )=0,即a =n兀/2(n=0,1,2,3)这说明模型上某点主应力 方向与偏振镜光轴重合,模型上也呈黑点,这类黑点构成的连续 黑线称为等倾线,等倾线上各点的主应力方向都相同,而且偏振 镜光轴的方向也就是主应力的方向。 sin兀8 /人二0,以公式8 = kt(b 1 -b2)代人,则。sin(兀/人)kt(b 1 -b2) = 0,于是可得b 1 -b 2 = nk /kt起偏镜图2圆偏振光场示意图b 1 -b2 = nf /1(n=0,1,2,3)上式表明,当模型中某点的主应力差值为f/t的整数倍时,则此点在 模型上呈黑点,当主应力差为f/t的某同一整数倍的各个暗点,构成 连续的黑线称为等差线(在此线上各点的主应力差均相等)。由 于应力分布的连续性,等差线不仅是连续的,而且它们之间还按 一定的次序排列,对应于n=l的等差线称为一级等差线或称一级条 纹,对应于n=2的等差线称为二级等差线或二级条纹,依次类推, 其中n称为条纹序数,以上是根据光源用单色光讲的。如果光源用 白光,则模型上具有相同主应力差的各点则形成颜色相同的光带, 所以这时的等差线又称为等色线。由以上讨论可知,根据模型中 出现的各向同性点、零应力点、等倾线、等差线(等色线),借 助于一些分析计算,就能求出模型中各点应力的大小和方向。 从上述基本原理可知,在使用单色光源时,等倾线与等差线都呈 黑色,不易辨认,为了消除等倾线以获得清晰的等差线图,在光 弹性仪两偏振镜之间装上二块1/4波长片,形成圆偏振光场,可 把等倾线消除,只剩下等差线,圆偏振光场如图2所示。图3-1对径受压圆盘等差线图图3-2对径受压圆盘等倾线图观察对径受压圆盘的等差线和等倾线,分别如图3-1和3-2所示。准备实验:光路调节先将光源、起偏器、检偏器、白屏依次放在导轨上,打开白光光 源,仔细调节各个器件的高度,使得整个光路高度比较合适。先 确定起偏器为任意偏振方向,然后调节检偏器偏振方向,使其正 交,即通过两个偏振片后的光强为最弱。然后调整两个偏振片的 距离。观察实验1:观察光弹材料光弹特性将光弹材料放入已经调整好偏振方向的两偏振片中间,调节光弹 材料的高度为合适。观察此时白屏的图像。然后拧紧光弹材料固 定架上端的螺母,给光弹材料施加应力,观察此时白屏的图像, 注意等差线(等色线)和等倾线的出现。本实验为验证性试验,没有试验数据。在观察过程中出现实验现 象即可。实验5.电光调制实验【实验目的】1、掌握晶体电光调制的原理和实验方法;2、学会用实验装置测量晶体的半波电压,绘制晶体特性曲线,计 算电光晶体的消光比和透射率。【仪器和装置】电光调制实验系统由光路与电路两大单元组成,如图1所示:图1电光调制实验系统结构【实验原理】某些晶体在外加电场的作用下,其折射率随外加电场的改变而 发生变化的现象称为电光效应,利用这一效应可以对透过介质的 光束进行幅度,相位或频率的调制,构成电光调制器。电光效应 分为两种类型:(1)一级电光(泡克尔斯一一Pockels)效应,介质折射率变化 正比于电场强度。(2)二级电光(克尔一 Kerr)效应,介质折射率变化与电场强 度的平方成正比。本实验使用铌酸理(LiNbO3)晶体作电光介质,组成横向调 制(外加电场与光传播方向垂直)的一级电光效应。图3横向电光效应示意图如图3所示,入射光方向平行于晶体光轴(Z轴方向),在平行 于X轴的外加电场(E)作用下,晶体的主轴X轴和Y轴绕Z轴旋 转45。,形成新的主轴X轴一Y轴(Z轴不变),它们的感生折 射率差为An,它正比于所施加的电场强度E:An = nrE 0式中r为与晶体结构及温度有关的参量,称为电光系数。n0为晶体对寻常光的折射率。当一束线偏振光从长度为1、厚度为d的晶体中出射时,由于 晶体折射率的差异而使光波经晶体后出射光的两振动分量会产生 附加的相位差8,它是外加电场E的函数:<2兀 2兀 厂 2兀 (l,八8 =_Anl 二方 n3 rE =方 n3 rJU(1)式中入为入射光波的波长;同时为测量方便起见,电场强度用 晶体两面极间的电压来表示,即U=Ed。当相位差8=兀时,所加电压人 d/、U = U = (2)兀2n3 r l0u兀称为半波电压,它是一个用以表征电光调制电压对相位差 影响的重要物理量。由(2)式可见,半波电压U决定于入射光的波 长入、晶体材料和它的几何尺寸。由(1)、(2)式可得:8 (U)=兀 U + 8U 0兀式中80为U=0时的相位差值,它与晶体材料和切割的方式有 关,对加工良好的纯净晶体而言80=0。图4为电光调制器的工作原理图。由激光器发出的激光经起偏器P后只透射光波中平行其透振方向的振动分量,当该偏振光Ip垂直于电光晶体的通光表面入射 时,如将光束分解成两个线偏振光,经过晶体后其X分量与Y分 量的相差为8 (U),然后光束再经检偏器A,产生光强为IA的出射 光。当起偏器与检偏器的光轴正交(A1P )时,根据偏振原理可求得 输出光强为:电值号袖图4电光调制器工作原理I - /si n(2a )s i n(4)式中a =0 -0,P x为P与X两光轴间的夹角。若取a=± 45。,这时U对IA的调制作用最大,并且(5)再由(3)式可得=I sin于是可画出输出光强IA与相位差8 (或外加电压U)的关系曲线, 即IA8 (U)或IAU如下:r*- h /2也 言2 k一 U. -31Z2U»/2 uu图5光强与相位差(或电压)间的关系由此可见:当8 (U)=2k兀(或 U=2kU兀)(k=0, ±1, ±2,.)时,IA=0当 8 (U)=2k兀 +1 或 U=(2k+1) U兀时,IA = Ip当8 (U)为其它值时,IA在0- Ip之间变化。由于晶体受材料的缺陷和加工工艺的限制,光束通过晶体时 还会受晶体的吸收和散射,使两振动分量传播方向不完全重合, 出射光截面也就不能重叠起来。于是,即使在两偏振片处于正交状态,且在a=。,-气=±45 的条件下,min当外加电压U=0时,透射光强却不为0,即IA = I一河U=U兀时,透射光强却不为,艮口 IA = ImaxIp由此需要引入另外两个特征参量:消光比M =产 min透射率I'T maxI0式中,Io为移去电光晶体后转动检偏器A得到的输出光强最大值。M愈大,T愈接近于1,表示晶体的电光性能愈佳。半波电压 U兀、消光比M,透光率T是表征电光介质品质的三个特征参量。从图5可见,相位差在8=兀/2或(U=U/2 )附近时,光强七与 相位差8(或电压U)呈线性关系,故从调制7的实际意义上来说,电 光调制器的工作点通常就选在该处附近。图6为外加偏置直流电 压与交变电信号时光强调制的输出波形图。由图6可见,选择工作点(U=Uk/2 )时,输出波形最大且 不失真。"选择工作点(U=0)或(U=Uk)时,输出波形小且严重 失真,同时输出信号的频率为调制频率的两倍。I1r I |I0=3.80V 正向偏压:电压U(V)04080100160200300360400480500电流I0. 090. 120. 180. 230. 440. 591. 041.321.481.721.73反相偏压:电压U Cv)0-40-80-100-160-200-300-360-400-480-500电流I 3)0. 090. 120. 180. 230. 430. 591. 061.351. 481. 731. 74Matlab仿真图:1 8将无法完成。实验6.液晶的电光效应实验原理液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁 等物理性质。液晶与液体、晶体之间的区别是:液体是各向同 性的,分子取向无序;液晶分子有取向序,但无位置序;晶体 则既有取向序又有位置序。就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。热致液晶又可分为近晶相、向列相和 胆甾相。其中向列相液晶是液晶显示器件的主要材料 13。接着液晶对于晶电的光效应有如下认识:液晶分子是在形状、介电常数、折射率及电导率上具有各 向异性特性的物质,如果对这样的物质施加电场(电流),随着 液晶分子取向结构发生变化,它的光学特性也随之变化,这就 是通常说的液晶的电光效应。液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲 向列相型(TN)、超扭曲向列相型(STN)、有源矩阵液晶显 示 (TFT)、电控双折射(ECB)等。其中应用较广的有:TFT型 一主要用于液晶电视、笔记本电脑等高档产品;STN型2 主要用于手机屏幕等中档产品;TN型主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应 用最普遍的液晶显示器件。TN型液晶显示器件显示原理较简 单,是STN、TFT等显示方式的基础。本仪器所使用的液晶样 品即为TN型。无外电场作用时,由于可见光波长远小于向列 相液晶的扭曲螺距,当线偏振光垂直入射时,若偏振方向与液 晶盒上表面分子取向相同,则线偏振光将随液晶分子轴方向逐 渐旋转90o,平行于液晶盒下表面分子轴方向射出;若入射线 偏振光偏振方向垂直于上表面分子轴方向,出射时,线偏振光 方向亦垂直于下表面液晶分子轴;当以其他线偏振光方向入射 时,则根据平行分量和垂直分量的相位差,以椭圆、圆或直线 等某种偏振光形式射出。对液晶盒施加电压,当达到某一数值时,液晶分子长轴开 始沿电场方向倾斜,电压继续增加到另一数值时,除附着在液晶盒上下表面的液晶分子外,所有液晶分子长轴都按电场方向 进行重排列,TN型液晶盒90o旋光性随之消失。祓晶透过光嘉电肘俯光片通电肘电柢罐振图6-1 a.TN型器件分子排布与透过光示意图13无噂5-口恩如电序NK'U.)图6-1 b.TN型电光效应示意若将液晶盒放在两片平行偏振片之间,其偏振方向与上表 面液晶分子取向相同。不加电压时,入射光通过起偏器形成的 线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转900,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶 盒上电压大小的关系见图6-1 ;其中纵坐标为透光强度,横坐 标为外加电压。最大透光强度的10%所对应的外加电压值称为 阈值电压(Uth),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大 透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了 获得最大对比度所需的外加电压数值,ur小则易获得良好的显 示效果,且降低显示功耗,对显示寿命有利。对比度Dr=Imax/Im.n,其中Imax为最大观察(接收)亮度(照度),Imin为最 小亮度。陡度p =ur/ uth即饱和电压与阈值电压之比。图6-2液晶电光效应参考图13TN型液晶显示器件结构参考图6-2,液晶盒上下玻璃片的 外侧均贴有偏光片,其中上表面所附偏振片的偏振方向总是与 上表面分子取向相同。自然光入射后,经过偏振片形成与上表 面分子取向相同的线偏振先,入射液晶盒后,偏振方向随液晶 分子长轴旋转900,以平行于下表面分子取向的线偏振光射出 液晶盒。若下表面所附偏振片偏振方向与下表面分子取向垂直 (即与上表面平行),则为黑底白字的常黑型,不通电时,光不 能透过显示器(为黑态),通电时,900旋光性消失,光可通过 显示器(为白态);若偏振片与下表面分子取向相同,则为白底 黑字的常白型,如图6-2所示结构。TN-LCD可用于显示数字、 简单字符及图案等,有选择的在各段电极上施加电压,就可以 显示出不同的图案。实验仪器液晶盒(附带控制电箱)、偏振片、偏振光试验平台(天津市 港东科技发展有限公司)、中心波长为632.8nm的氦氖激光器 (天津市港东科技发展有限公司)以及配套的光电接收器(最小 光强为0.001 p W)。实验步骤在做实验之前需要将实验仪器放置在光学导轨上,光学导 轨上依次为:氦氖激光器-偏振片-液晶盒-偏振片-光电探测器 (带可调光阑)。打开氦氖激光器,调节各元件高度,尽量使激 光依次穿过个光学元件中心,最后打在光功率测试仪的探头 上。调整光路,打开光功率测试仪,旋转两片偏振片,可观察 到光功率计数值大小变化,若最大透射光强小于200p W,可旋转氦氖激光器机身,使最大透射光强大于200 p W最后调节 偏振片正交至透射光强值达到最小。打开液晶盒的控制电箱, 此时液晶是最黑状态。按一下“调节”按钮,此时液晶为透光 状态,此时加在液晶上的电压为5.1V。此时开始记录光功率测试仪读数,然后逐次按“调节”按钮,每次增加的电压为 0.2伏,液晶状态完成一个透光一一最黑状态,共有16个档位。 最后全黑时的电压为8.4伏。作电光曲线图,纵坐标为透射光强值,横坐标为外加电压 值。根据作好的电光曲线,求出样品的阈值电压uth (最大透光 强度的10%所对应的外加电压值)、饱和电压Ur(最大透光强度 的90%对应的外加电压值)、对比度Dr(Dr=Imax/Imin)及陡度P (P 斗 Uth)。演示黑底白字的常黑型TN-LCD。拔掉液晶盒上的插头, 光功率计显示为最小,即黑态;将电压调至8.4V左右,连通液晶盒,光功率计显示最大数值,即白态。数据记录及处理测量点1234567891(:光强17.417.116.816.615.814.412.8108.14.£电压5.15. 35. 55. 75. 96.16. 36. 56. 76. 2下图为计算机模拟出实验数据得出的图形,图形基本符合要 求,验证了液晶电光效应。由于在液晶面板的两端加入了两个偏振方向相互垂直的偏振板。故而实验在电压较低的时候光强 大,电压较高的时候光强小。I .Q I I I _ I I I _ I U_ iH Ik -r|4-* 1!_ _ -图6 选择不同工作点时的输出波形1 I .1 Jr工作点的偏置可通过在光路中插入一个X/4波片其透光轴平 行于电光晶体X轴(相当于附加一个固定相差8=兀/2 )作为“光偏 置”。但也可以加直流电压来实现。实验数据及结论: