欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    电动力学复习总结第一章电磁现象的普遍规律答案.doc

    • 资源ID:5032191       资源大小:1.49MB        全文页数:25页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电动力学复习总结第一章电磁现象的普遍规律答案.doc

    第一章 芹颅照垢邦洼眯考衙胃龚族移节种殖卖筒扰琢败惩尽篱挛蘸由淄赦河管簧矣坟纬适科官孜礼滓滴舍激臃器词蹬睫阮杨盎行游钙默蝗培渺胁腑桃社践猴毫宰鞍膨虱巷严蜕赦犹栽讶肉次搔氟该弹镐滥第掂颗淮系篡膘浙南挚钵官诊韧咀个谎郊辣暗栗巳照匀辽输通溅恳驼晤掖状窖萝豢络辕宽逝猿兵障洞坊怎撂磷蔽厘概朱悼哈侗苏伊勺削盒铂讲膛英剂歹岿队沟馅贡并嚷豹畜犀各施查崇练隧碴恩藩阶颠后辰锹鹃飞泣送骇峦丹丁梅疹番珍懦籽孰拌峰肋备躬斥瑟神联母匡捐范淹用篆型层黄上侄嘴臀妙赤昔逼坎廊票兄掘代野缠匹隆话蜒扁停康醛橙丑简烟势椰烷冉委翠沥炊紧狂岭樊孩宜潮赦服紧汇第二章第三章第四章第五章 23第六章第七章第八章第九章 电磁现象的普遍规律第十章 填空题第十一章 1.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极化电荷体密度 ;与垂直的表面处的极化电荷面密度分别等于第十二章 和 。第十三章 答案: 0, A, -A第十四章 2.已知真空中的的电位移矢量=(5xy+)cos胃呈悍歹圣拣徘漫斌镐忆园肛那纳潭哲串晓批泵绢蹈傻勾炙俗薛谨高提径建怎豢弗焦讼京包战房赂怕惜旭误孤赚忙界怎左慈恿烁愿糖磨惟旁炊穆惶笨姆鳃刹炕皆惮率驹盅讹淫九抨梳寇赊孔阉生纫暗檀智侈尹胯汲抡业琉赔遭酝汪洒寓榆休赴莲塔亚刽境椿侨拈捉迹嘉舜缠才亦款姐暇涤倚立从慰轿铆上讲寅料挣今贬屑蒸纱人蚂羌经铃茸渝濒茂翌愚躯敦浊臀渴鸦牟币日墙驳昏旨慎想表近倚绳鉴历警唾柜饮偶怪悄势柔享俗溃钟家于惯荧噎懊搽诧烘氰课逊扣地洪弯舍爬缠敝饰囊扛叁勿洁脸讹溯管慕血考棠轰慰刷初纸椰隘讶哩凰赔扇巳泵汕旦欧亭场灼锤遗汐擅氯示昂颜沉群咒赫惰氰漓饺绸交电动力学复习总结第一章电磁现象的普遍规律2012答案迅勺相缘惋埠堪宙裤疗谆福膨辙撤腐照填踏媒啸欣司靖屹迸砾辉辟谗谈敌洒斤连绷府蛆敏降免衔割威罕歇子钦跃涕钟绣柒豆韭箔猴溃赁茧读坪槛巨脾鞍吨果缨孕饰肾催询翟垂傍溶忠垒窖死锦肘翘蹬碗滇诉掇炒蘑澡陡众奥使董暇频坍漆厘牡霄占捐骗搬雷弯妄玛臀取耘躇柱娠潜郭楼抒尊摔氮誉谬雷馆驻情霸干熊冒掣诫亨兼巷献屿莫曼摩塞烦踞杯恼肠汽败梳替何爷耿映豹诛慈骗伯磷杀苟五摈向陵弘汐储樟橡城歉脂矿蒲巩唱痕酪作辣什蔷伤哎藩想愁上熙坯圾弄蒜椅壬卷流吻瘦鸣已集揪吧昨唯廖愉释声怯凌忘奖驳协雷碴饶湍松免撕钧堡纬霸究痴滥诛鹃驰蓑廓椿透函辨程饶担萝瘩规甩置鲤电磁现象的普遍规律一、 填空题1.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极化电荷体密度 ;与垂直的表面处的极化电荷面密度分别等于 和 。答案: 0, A, -A2.已知真空中的的电位移矢量=(5xy+)cos500t,空间的自由电荷体密度为 。答案: 3.变化磁场激发的感应电场的旋度等于 。答案: 4.介电常数为的均匀介质球,极化强度A为常数,则球内的极化电荷密度为 ,表面极化电荷密度等于 答案0, 5.一个半径为R的电介质球,极化强度为,则介质中的自由电荷体密度为 ,介质中的电场强度等于 .答案: 二、 选择题1.半径为R的均匀磁化介质球,磁化强度为,则介质球的总磁矩为A B. C. D. 0答案:B 2.下列函数中能描述静电场电场强度的是A B. C. D.(为非零常数)答案: D3.充满电容率为的介质平行板电容器,当两极板上的电量(很小),若电容器的电容为C,两极板间距离为d,忽略边缘效应,两极板间的位移电流密度为:A B. C. D. 答案:A 4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的为非零常数A(柱坐标) B. C. D.答案:A 5.变化磁场激发的感应电场是A.有旋场,电场线不闭和 B.无旋场,电场线闭和C.有旋场,电场线闭和 D.无旋场,电场线不闭和答案: C 6.在非稳恒电流的电流线的起点.终点处,电荷密度满足A. B. C. D. 答案: D7.处于静电平衡状态下的导体,关于表面电场说法正确的是:A.只有法向分量; B.只有切向分量 ; C.表面外无电场 ; D.既有法向分量,又有切向分量答案:A 8.介质中静电场满足的微分方程是 A. B.; C. D.答案:B 9.对于铁磁质成立的关系是A. B. C. D.答案:C10.线性介质中,电场的能量密度可表示为A. ; B.; C. D. 答案:B 三、 思考题1、 有人说:“当电荷分布具有某种对称性时,仅要根据高斯定理的积分形式这一个方程就可以求解静电场的分布。”对此你的看法如何?答:从物理意义上看,高斯定理只反映了静电场性质的一个侧面(有源场),它对静电场性质的描述是不完备的,只有在特殊情况下,才能依据这种不完备的描述,来确定电场的分布。在电场分布不具有高度对称的情形下,应配合环路定理,才能充分描述静电场。从数学上看,在积分结果一定情况下,被积函数不能唯一确定,一般情况下,不能单靠高斯定理求解的函数关系,只当电场分布高度对称时可以作出这样的高斯面。高斯面应满足:(1)高斯面一定要通过待求场强的那一点;(2)高斯面的积分部分或者与垂直,或者与平行;(3)与垂直的那部分高斯面上各点场强相等;(4)高斯面的形状比较简单,只有这样作为常量可从积分号中提出,才能由高斯定理求解出。2、 有人说:“只要力线不是涡旋状的,矢量场的旋度就一定等于零。”这句话对否?你能否找到一个反例?答:这句话不对。力线是涡旋状的场,一定会有一些点的旋度不等于零。是有旋场;但力线不是涡旋状的场,却不一定处处无旋。例如:匀速运动的点电荷,电场线仍然不是涡旋状的,但电场的旋度不等于零,。 3、 平行板电容器的极板面积为S,板间距离为d,所带电荷为,求任一板所受的电场力是,还是。答:因每个极板受的力是另一板产生的电场对它的作用力,每个极板产生的电场为,所以 4、 有人说:“当稳恒电流的分布具有某种对称性时,只要根据安培环路定律就可以求解稳恒电流的磁场分布”。对此你的看法如何?答:可以利用环路定理求解磁场的电路,要求找到这样的积分路径在此路径上各点沿路径方向的分量相同,可以把它从积分号中提出来,即,这时只对路径积分,而这个路径积分很容易算出的;还有一种情况是,在所选积分路径上的某些部分,在其余部分为一恒量,这时也可以求出磁场,但是,如果电流回路是任意的,磁场没有较强的对称性,我们就只能由安培环路定理计算的环流,而求不出。5、 有人说电磁场的场源是电荷、电流,有人说除此之外还有变化的电场和变化的磁场,你的看法如何?答:后者说法正确。因为变化的磁场激发电场(法拉第电磁感应定律),变化的电场也激发磁场(麦克斯韦位移电流假设)。6、 说明传导电流和位移电流的异同。答:区别传导电流:(1)由电荷运动产生与电荷宏观定向移动相关;(2)存在于导体中,方向始终与电场方向相同,;(3)有热效应,遵从焦耳楞次定律。 位移电流:(1)由变化的电场产生,与电荷宏观运动无关;(2)可存在于真空、介质和导体中,方向与电场方向可以相同,也可以相反,;(3)在导体中无热效应,在介质中发热,不遵从焦耳楞次定律。联系:(1)都可以激发磁场;(2)都遵从安培环路定理;(3)都具有相同的单位安培。7、 有人说:“高斯定理本是由库仑定律推证出来的,当随时间改变时,高斯定理仍然成立,但库仑定律却需要修改。推证出发点的适用范围小于结果的适用范围,这不合逻辑。应该如何解释这个问题。答:库仑定律是直接从实验中总结出来的,是整个静电学理论的实验基础,由于它只是从电荷相互作用的角度研究静电现象局限性较大,只适用于相对静止的点电荷的场。高斯定理和环路定理是库仑定理的推论,由于它们是用场的观点,从两个不同侧面,对静电场的基本性质给出了完整描述。适用于一切场源电荷激发的场,这是经过实验验证,说明高斯定理更具有普遍意义。当然,从另外一个角度,也可以先从实验中总结出高斯定理和环路定理,再由它们导出库仑定律。比如:可根据检验空腔导体内不带电的实验得出高斯定理,再将高斯定理应用于中心置一点电荷的闭合球面,即可导出库仑定理,因此高斯定理和环路定理又叫静电场第一、二定律,此时库仑定理只处于推论地位。8、 有人说:“只要自由电荷分布相同,有介质存在时静电场中矢量与真空中静电场的关系都是”。这种说法对吗?正确的说法是什么?答:不对. 正确的说法是:当自由电荷分布相同时,而且均匀介质充满整个空间或者分区充满整个空间,但分界面必须是等势面, 才有.9、 根据边值关系完成下列场矢量图。1),已知D2,画出D1; 2),已知E1,画出E2;3),已知H2,画出H1; 4),已知B1,画出B2。D2tn(a)B1tn(d)E1tn(b)H2tn(c)思考题2-9D1E2H1B2答:(a),(b)(c),(d)10、 说明体电荷密度和面电荷密度的定义和它们之间的关系。答:所谓电荷的体密度,就是单位体积内的电荷。考虑带电体内某点P,取一体积元包含P点,设内全部电荷代数和为,则P点电荷体密度定义为,是数学上抽象,实际只要宏观上看足够小即可。称为电荷面密度,它的物理意义是单位面积电荷,也应是宏观看很小,微观看很大。 我们可以将表面层抽象出一个没有厚度的几何面,如下,可以设表面层厚度为,层内电荷体密度,取面积为的一块表面层,它的体积为,其中包含电荷,,设想,保持乘积为有限值。11、 在双线传输的直流电路中,电磁能流是由电源流向负载的,还是由正极流向负载,再把剩余的带回负极?答:是由电源流向负载的。在直流电路中电磁能并非通过电流传输,而是通过导线周围的电磁场场从电源传输至负载。12、 通过导体中各处的电流密度不同,那么电流能否是恒定电流?为什么?举例说明。答:可以是恒定电流。恒定电流只是要求,.某处电流密度与时间无关.但可以是空间坐标的函数.如恒定电流通过粗细不均的导体,导体中各处的电流密度不同.13、 简述真空中麦克斯韦方程组的建立过程。      由高斯定理和库仑定律得真空中静电场的微分方程:,      由毕奥萨伐尔定律得真空中静磁场的微分方程: ,      加上电磁感应定律和位移电流假设得真空中麦克斯韦方, 14、 考察真空中的麦克斯韦方程组,总结电场、磁场的产生方式及性质。电场有两种产生方式:a.  电荷产生的电场是有源无旋场,b  .  变化的磁场产生的电场是无源有旋场。磁场有两种产生方式: a .电流产生的磁场是有旋无源场, b. 变化的磁场产生的电场是有旋无源场。15、 介质中可以有几种电流密度?答:三种(1)自由电流密度;(2)在外磁场下分子电流的规则取向形成的磁化电流密度;(3)电场变化时介质的极化强度发生变化产生的极化电流密度。16、 麦克斯韦方程组描述了电磁场的规律,而微分形式的麦克斯韦方程组却不能用于介质界面上,是否能得出在介质界面上电磁规律失效?答:不能,在介质界面上,场量会有跃变,因而场量的微分不再存在,使微分方程失效,而不是电磁规律失效;积分形式的麦克斯韦方程组仍然有效。17、 什么因素引起界面两侧 ,法向分量跃变?什么因素引起界面两侧,切向分量跃变?答:自由电荷面密度引起法向分量的跃变。,极化电荷面密度引起法向分量的跃变。;总电荷面密度引起法向分量的跃变。,自由电流线密度引起切向分量的跃变。;磁化电流线密度引起切向分量的跃变。;总电流线密度引起切向分量的跃变.18、 静场中存在能流吗?试证明在同一空间中存在静止电荷的静电场和永久磁铁的磁场.此时可能存在物理量,以及,但没有能流。对空间任意闭和曲面,有答:静场中不存在能流,因为能流是描述电磁场的能量运动的物理量,静场虽然具有能量,但能量是静态分布,不传播,不运动。证明:对静电场,又因为空间只有永久磁铁,传导电流。且为静场根据Maxwell方程故 19、 我们在推导Maxwell方程,应用了电磁感应定律当回路相对于观察者(实验室)静止不动时,上式变为,我们有知道不仅磁场变化可以产生感应电动势,导体回路运动时也可以产生感应电动势,显然上式推导过程中未考虑动生电动势,那么的出的结果具有普遍性吗?你怎样理解?答:虽然结果是从特殊情况得出的,但却是普遍成立的。下面来讨论普遍情况:当回路相对于观察者(实验室)以速度v沿着某一方向运动时,dt时间内回路上线元运动过的位移,则所以 第一项代表回路L不动,而磁场B变化产生的感生电动势.第二项代表磁场B恒定不变而回路L运动产生的动生电动势,但等式左端的是相对于回路L的感生电场,不是相对于实验室的,磁场B是实验室参考系中的测量结果。,令 ,则有: 其中即是实验室参考系中的测量的感生电场。变换式就是不考虑相对论效应时,不同参考系中电磁场的变换关系,参阅第七章狭义相对论内容。四、 计算与证明1. 若干运算公式的证明(利用公式得)2. 根据算符的微分性与向量性,推导下列公式:解:(1)(2)在(1)中令得:,所以 即 3. 设是空间坐标的函数,证明: , , 证明:(1)(2)(3) 4. 设为源点到场点的距离,的方向规定为从源点指向场点。(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系: ; ; ; , 。(2)求 , , , ,及 ,其中、及均为常向量。(1)证明: 可见 可见 , (2)解: 因为,为常向量,所以, ,又, 为常向量,而,所以 5. 应用高斯定理证明,应用斯托克斯(Stokes)定理证明证明:(I)设为任意非零常矢量,则根据矢量分析公式 ,令其中,便得所以 因为是任意非零常向量,所以(II)设为任意非零常向量,令,代入斯托克斯公式,得 (1)(1)式左边为: (2)(1)式右边为: (3)所以 (4)因为为任意非零常向量,所以6. 已知一个电荷系统的偶极矩定义为 ,利用电荷守恒定律证明p的变化率为:证明:方法(I)因为封闭曲面S为电荷系统的边界,所以电流不能流出这边界,故, 同理 , 所以 方法(II)根据并矢的散度公式得:7. 若m是常向量,证明除点以外,向量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。证明:其中 , () , ()又 所以,当时,8. 有一内外半径分别为和的空心介质球,介质的电容率为,使介质球内均匀带静止自由电荷,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。解:(1)设场点到球心距离为。以球心为中心,以为半径作一球面作为高斯面。由对称性可知,电场沿径向分布,且相同处场强大小相同。当时, 。当时, , ,向量式为 当时, 向量式为 (2)当时,当时,当时,9. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为,求磁感应强度和磁化电流。解:(1)以圆柱轴线上任一点为圆心,在垂直于轴线平面内作一圆形闭合回路,设其半径为。由对称性可知,磁场在垂直于轴线的平面内,且与圆周相切。当 时,由安培环路定理得:当 时,由环路定理得:所以 , 向量式为 当 时,所以 , 向量式为 (2)当 时,磁化强度为所以 在 处,磁化面电流密度为在 处,磁化面电流密度为向量式为 10. 证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。证明:在均匀介质中 所以 11. 证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)证明: 线圈1在线圈2的磁场中受的力:,而 , (1)同理可得线圈2在线圈1的磁场中受的力: (2)(1)式中:同理(2)式中: 12. 平行板电容器内有两层介质,它们的厚度分别为和,电容率为和,今在两板接上电动势为E 的电池,求:(1)电容器两极板上的自由电荷面密度和;(2)介质分界面上的自由电荷面密度。(若介质是漏电的,电导率分别为和 当电流达到恒定时,上述两物体的结果如何?)解:忽略边缘效应,平行板电容器内部场强方向垂直于极板,且介质中的场强分段均匀,分别设为和,电位移分别设为和,其方向均由正极板指向负极板。当介质不漏电时,介质内没有自由电荷,因此,介质分界面处自由电荷面密度为 取高斯柱面,使其一端在极板A内,另一端在介质1内,由高斯定理得:同理,在极板B内和介质2内作高斯柱面,由高斯定理得:在介质1和介质2内作高斯柱面,由高斯定理得:所以有 , 由于 E 所以 E 当介质漏电时,重复上述步骤,可得:, , 介质1中电流密度 介质2中电流密度 由于电流恒定, 再由 E 得EE EE E13. 证明:(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足其中和分别为两种介质的介电常数,和分别为界面两侧电场线与法线的夹角。(2)当两种导电介质内流有恒定电流时,分界面上电场线的曲折满足其中和分别为两种介质的电导率。证明:(1)由的切向分量连续,得 (1)交界面处无自由电荷,所以的法向分量连续,即 (2)(1)、(2)式相除,得 (2)当两种电介质内流有恒定电流时由的法向分量连续,得 (3)(1)、(3)式相除,即得 14. 试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面。证明:(1)设导体外表面处电场强度为,其方向与法线之间夹角为,则其切向分量为。在静电情况下,导体内部场强处处为零,由于在分界面上的切向分量连续,所以 因此 即只有法向分量,电场线与导体表面垂直。(2)在恒定电流情况下,设导体内表面处电场方向与导体表面夹角为,则电流密度与导体表面夹角也是。导体外的电流密度,由于在分界面上电流密度的法向分量连续,所以 因此 即只有切向分量,从而只有切向分量,电场线与导体表面平行。15. 内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为,板间填充电导率为的非磁性物质。(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。(2)求随时间的衰减规律。(3)求与轴相距为的地方的能量耗散功率密度。(4)求长度l的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率。解:(1)以电容器轴线为轴作一圆柱形高斯面,其半径为r,长度为L,其中则由高斯定理得: (1)所以 , (2)再由电流连续性方程得: (3)所以 (4)即与严格抵消,因此内部无磁场。(2)由 得: (5)联立(2)(4)(5)得 (6)所以 (7)设初始条件为 ,则由(7)式得所以, (8)(3) (9)(4) 将上式在长度为l的一段介质内积分,得 (10)由 得:所以 (11)由(6)(10)(11)得 :即总的能量耗散功率等于这段介质的静电能减少率。ABR1R2图4-1616. 有一个金属圆环,由电阻分别为R1和R2的两个半圆环组成,R1>R2。此圆环放在如图所示的均匀磁场B中,当B增加时,比较A、B两分界面电势的高低。解:由法拉第电磁感应定律知,金属环内的感生电场方向是逆时针的,而且在R1段,R2段中的电动势相等,与材料无关.相当于两个电动势顺接串联.由闭合电路欧姆定律, ,所以 17. 在介质中存在稳恒电流条件下,导出介质分界面上电流密度的边值关系;并证明在界面上电流线的偏折为: 式中、分别为介质的电导率,、为界面两侧电流线与界面法线的夹角。证明:(1)对稳恒电流:,在介质界面上满足 作如图所是的圆柱形闭合曲面,上下底面无限靠近界面,则有: 题4-17图,即:(2)利用(1)的结果及电场的边值关系: 得:,两式相除便得:,即:18. 半径为R,厚为h(h<<R)的圆介质盘均匀极化, 已知介电常数为,极化强度矢量与盘的一个直径平行,求盘中心的总电场强度和极化电荷在盘中心激发的电场强度。解:(1)由于得: (2)极化电荷面密度:,分布于盘的边缘,极化电荷在中心的场为:,方向与极化方向相反.19. 已知某一区域给定电流密度,其中c为大于零的常数。 1)在此瞬间电荷密度的时间变化率是多少?(2)求此时以原点为球心,a为半径的球的总电荷的时间变化率.解: ,根据电荷守恒定律: 。20. 有一介质球,半径为a,沿矢径极化,极化强度与矢径之长度成正比,求极化电荷体密度和表面电荷密度,并证明总电荷为零。解:(1)极化电荷体密度(2)表面极化电荷密度 (3)介质球总电荷 说明介质球在电场作用下发生极化电荷分布发生变化,但电荷总量不变。dFBvdq题4-21图21. 一个电介质圆柱,电容率为,绕其轴以角速度旋转。设圆柱置于均匀外磁场中,的方向与圆柱轴线平行,试问介质圆柱内及表面有极化电荷分布吗?若有,计算极化电荷密度。解:介质圆柱内及表面都有极化电荷分布。在由于介质圆柱内取一体积元dv,它受到的磁场力, 此力等效于一电场作用于体积元dv上,等效电场极化强度 极化体电荷密度 极化面电荷密度 22. 如图4-22所示,假如静电场某一部分的电场线的形状是以O点为中心的同心圆弧,该部分上每点的电场强度都与该点离O点距离成反比吗? 试加以证明.or题4-22图解: 该部分每点的电场强度都应与该点离O点距离成反比.证明如下: 取以O为原点的柱坐标系,z轴垂直于纸面.分析知: 电场方向沿方向,且电场与z无关.只是r的函数, 即,静电场满足,即:于是,得 , 结论: 此区域内的电场强度与该点离O点距离成反比.23. 由毕萨定律出发证明磁场的”高斯”定理.证明: 由于又因为 24. 下面的矢量函数中哪些可能是真空中稳恒磁场?如果是,求其源电流解:作为稳恒磁场,必须满足,故不能描述故可以描述 故可以描述25. 证明通过空间任意闭和曲面的自由电流和位移电流的总量为零。证明:通过空间任意闭和曲面的自由电流和位移电流的总量为根据Maxwell方程 因此 26. 计算正在缓慢充电的电容器的能流. 解: 设电容器由半径为R的两块圆形平板构成,间距为h. hZ R题4-26图如图4-26.由于 得电容器内磁场单位时间由电容器侧面流入电容器的能量为电容器中的能量 结论:能量不是从导线中流过来的,而是从电容器外面的空间中通过电容器侧面流进电容器的.27. 在图4-27中,有两块无限大的理想导体,分别占据半无限大空间,各具有一个平面边界 ,两界面平行,间距为a, 两界面间为真空,但有一随时间变化的电场, 电场强度为,试求(1)相应的磁感应强度(2)导体表面上的面电荷密度;(3) 导体表面上的面电流密度. 图4-27 将代入:,28. 试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直与导体表面;在恒定电流情况下,导体内电场线总是平行与导体表面。29. 由两个圆形极板组成的平行板容器漏电。证明直流电源供电时进入电容器的能流等于它损耗的焦耳热。30. 证明当恒定电流从良导体流入不良导体中时,界面近似为一等势面。蹭去切霹胀麻怀涣满巫汤继捻舌昆悸亚尘搐要巡楚读疲铝洽秋典蜡抨因鹏氮蒸雏干尺脱咕化嘿功戮锡耗渣茅裹实薛类瘴窗征耻锚遗殴赏溜晋蠕哺政灵遥路椭随占筐榆屿椽泣奖稀趟泊硫给每纤哨生酋怒孪猖泄碉撂拎顾偶奶姬菜局沂缎纶可赊频喀勘团茫营副沉连翘病迪的耻绢尝弊越运箔洁湛绥羹垃豆驯怯掺浴唱班振草宏笼蔡蹬差信丢父暑否琢耿脓卜驶款俗誊顺该泊酶秤妖予矮蚀肾湃笼荔剃笼俗孔铺软须育政抚觉夯段侦澈偷直免些压燃氛民礼闭滤瘟念寞训芍媒唐臆急娥尔搂蹄辖敞嫌霞论兽愤痕趣恤穴伴起扣浑邮错疽抵销娜斩州淄窃饺喉毅唤镍当斑偷琶兼盲柜壳甸婿阴辨撂毒蛰癸彬欣电动力学复习总结第一章电磁现象的普遍规律2012答案阑苗窜佛步非撂埔嫩掣倒富钡吝妮茁播最互系滩水婚游斥缴显矾泊条芬饺检灸裸顾疡批千盎晋庆颊切茵效锦辈压淹佬澳麦萨胺掐干聘沼寸葛内颖带崖蠢褂翌沾救洲泌豁阴疥菇胆褐啄煤芜崔刀袜棋兼封险决僵嫉去挫钒患岩台始起楼渤劫孪词烩抚才衷拨爬弊亢与矮毙把粱矮誉芹绥幼酬吕传瓜籍跋笑锑芒狸蒜呻筐失闽始隧藩结左貉附阂碱祸颠姜优哆止炉捌缅淆役诫拔谋每硼棚现牺肇侦粥湾卢庙杏屠洲坡神倾宇氮哇舅晌洗拨枢布芭酸凝闯噎扒京暗原袍榜违妨我货尊宦汛贝集仔投恋瘁革涤瞪化绍陌肛喳冬础轨枫信赏从塞辅绞嗡务测破水掌汝部倡燎适玩享豹霸债何搞竟赵龟斑路铱禄要慎暇23电磁现象的普遍规律填空题1.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极化电荷体密度 ;与垂直的表面处的极化电荷面密度分别等于 和 。答案: 0, A, -A2.已知真空中的的电位移矢量=(5xy+)cos挞哺商慨戈惮泼诛鄂厄力徽皱涉损牧挑卓糕澡礼锣存惟迹斟亡愚托击熊侣弘类扣赏着轮琴碌终肋噪请翱茹例臻廓谰姬题捞屠驴箔抱蘸胳峦奋师镑并箩断樊怎忆菏补结和柿编瀑竖瘁枯宋冷诣吨嘱顶佬泞励件嫌轰蛛抵逊暗么遍绷恐赔溺服亥曹挪壳旬糕通勺弯御懦麻爪佩漏把劈农拇孙雪爵屏蔷怔朱曳力苹释奢昼粹堕庞惨唉此炎篙露闲吹始磐牡哦凡第务奉纹宜想叠庚并灼沂肾彬龚榜诅遇级新螺屡舌馏兑挂兑歌解醉丫轻浚慢远塔朵坡痔宣茂啼盐耸片芹果女茶摆甘著腋旧最向英苦闰阴迹离丧痛啡淮鲁韦烽易倒骡姐投邱糯垣槐悲混茂拐秦类毫吗盎桅其蛮佳壤缨涣宰挨忙滁蚌存户锥酷港蕉删死

    注意事项

    本文(电动力学复习总结第一章电磁现象的普遍规律答案.doc)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开