《生活中的优化问题》课件(人教A版选修2-2).ppt
2、求最大(最小)值应用题的一般方法:,(1)分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步;,(2)确定函数定义域,并求出极值点;,(3)比较各极值与定义域端点函数的大小,结合实际,确定最值或最值点.,1、实际应用问题的表现形式,常常不是以纯数学模式反映出来:,首先,通过审题,认识问题的背景,抽象出问题的实质;其次,建立相应的数学模型,将应用问题转化为数学问题,再解.,3.4生活中的优化问题,解:设箱底边长为x,则箱高h=(60-x)/2.箱子容积 V(x)=x2h=(60 x2-x3)/2(0 x60).,令,解得x=0(舍去),x=40.且V(40)=16000.,由题意可知,当x过小(接近0)或过大(接近60)时,箱子的容积很小,因此,16000是最大值.,答:当x=40cm时,箱子容积最大,最大容积是16000cm3.,解:设圆柱的高为h,底半径为r,则表面积S=2rh+2r2.,由V=r2h,得,则,令,解得,从而,即h=2r.,由于S(r)只有一个极值,所以它是最小值.,答:当罐的高与底直径相等时,所用的材料最省.,解:设B(x,0)(0 x2),则 A(x,4x-x2).,从而|AB|=4x-x2,|BC|=2(2-x).故矩形ABCD的面积为:S(x)=|AB|BC|=2x3-12x2+16x(0 x2).,令,得,所以当 时,因此当点B为 时,矩形的最大面积是,应用问题要引起重视.,(1)利用函数的导数求函数的最值在求函数的值域、不等式的证明及解法中有广泛的作用。,(2)在实际问题中如果可以判定可导函数在定义域内 存在最大(小)值,而且函数在这个定义域内又只有 唯一的极值点,那么立即可以判定,这个极值点的函 数值就是最大(小)值,这一点在解决实际问题时很 有用.,课堂小结,