勾股定理 (2).doc
勾 股 定 理安徽省金寨县现代产业园仙花实验学校 黄世军教材:义务教育课程标准教科书数学八年级下册(沪科版) 教学任务教 学 目 标知识与技能目标1. 培养正确的观察事物分析事物能力,理解并掌握勾股定理及其证明.2.过程与方法目标1. 在学生经历“观察猜想归纳验证应用”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的思想.2. .情感与态度目标1. 通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,培养学生的合作交流意识和探索精神.2. 重点探索和证明勾股定理.难点用拼图方法证明勾股定理. 教学准备教具配套课堂使用的教学多媒体课件。学具网格图纸、相同规格的Rt片若干张。 教学流程安排活动流程图活动内容和目的活动1 创设情境激发兴趣通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣。活动2 故事场景发现新知通过问题激发学生好奇、探究和主动学习的欲望。活动3 深入探究网络信息观察分析方格图,得出Rt的性质,发展学生分析问题的能力。活动4 规律猜想直达快车集中规律,概括描述,关注焦点。活动5 数字验证拼图效果通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神。 活动6 实践应用拓展提高巩固应用培养实践技能。 活动7 回顾小结整体感知回顾、反思、交流。 教学过程设计问题与情境师生行为设计意图活动1 创设情境激发兴趣2002年在北京召开的第24届国际数学家大会,这就是本届大会会徽的图案. 它象一个转动的风车,挥舞着手臂,欢迎来自世界各国的数学家们. (1)你见过这个图案吗?(2)听说过“勾股定理” 吗?(1)教师说明:这个图案是我国汉代的赵爽在用来证明勾股定理的“赵爽弦图”加工而来的。教师应重点关注:a.学生对“赵爽弦图”及勾股定理的历史是否感兴趣。b.学生对勾股定理的了解程度。通过欣赏图片,激发学生学习兴趣,自然引出本节课的课题。 活动2 故事场景发现新知毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边之间的某种数量关系。地面 图18.1-1 同学们,请你也来观察下图中的地面,看看能发现些什么?(2)教师讲述故事、展示图片。引导学生分析情景、提出问题: 你是怎样观察这个砖铺的现场的?(从基本砖铺材料、图形单元、位置形态进行观察:铺设材料是正方形砖块,其中丰富的图案都是由等腰Rt色块作为基本单元构成。)A B由于对角线的作用,通过进一步的观察或者手工拼图可以发现用等腰直角三角形拼正方形的基本方法(充分展示出了等腰直角三角形与正方形的结构关系)。(3)在课堂上开展分组活动,让学生亲手操作:对正方形进行剪切、拼贴然后再将它们关联(由正方形的边长关系到等腰直角三角形)起来从而实现真正意义上的发现-合围(以等腰直角三角形的三边为边长建立正方形,而且它们之间有面积关系)。C D通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。 分别以等腰直角三角形的三边为边长建立正方形,不仅能体现出数形结合的思想还能启发我们进一步地讨论直角三角形的有关性质。活动3 深入探究网络信息等腰Rt有上述性质其它的Rt是否也具有这个性质呢? 网格 18.1-2 你是如何计算那个建立在Rt斜边上的正方形面积的? 活动4 规律猜想直达快车由上面探究我们可以得到命题1在Rt中,两直角边的平房和等于斜边的平方。 (4)怎样探索“其它”的Rt的三边关系呢? 目标体验:有区别的看待直角三角形(从地板上的等腰直角三角形出发,构建“其它”直角三角形并且在它的三边建立正方形以突出便利于探究性学习的网格图形)。 (5)要求学生画一个两直角边分别为2,3的直角三角形,并以它的三边为边长(根据定义法辅用以直尺)建立正方形。 (6)计算各正方形面积并验证这个Rt的三边存在的关系。 或 (7)对于两条直角边分别为3,5的Rt,它的三边上的正方形也存在相类似的面积关系吗? 归纳得到:两条直角边上的正方形的面积之和等于斜边上的正方形的面积. 验证:在“其它” Rt中,两直角边的平方和等于斜边的平方。 (8)分析并根据命题画图、写出已知和求证。 已知 如图,在RtABC中,它的两条直角边长分别为a,b斜边长为c,求证: 把注意力从地面图案转移到书桌上,让学生感知正方形网格图的实用性与便捷性。 关于斜边上正方形的面积计算,除了突出斜放正方形的水平外框,还可以(运用图形中存在的整体与部分、部分与部分之间的关系)展开探索性的联想,以获得算法多样性体验。 发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力。 联想到用字母表示数字的方法,贯彻代数的基本应用思想。活动5 数字验证拼图效果证明命题1的方法很多,下面介绍我国古人赵爽的证法。 赵爽根据此图指出:四个全等的Rt(红色)可以围成一个大正方形,中空部分是小正方形(黄色)。 我们不难在网格图中得到如上图案。可以结合赵爽弦图进行深入学习。 (定理命名)我国是最早发现勾股定理的国家之一,据周髀算经记载:公元前1100年人们已经知道“勾广三,股修四,径隅五”. 故将此定理命名为勾股定理. (9)你觉得应该怎样证明这个结论呢? 下面我们学习赵爽的弦图证明方法,老师作动态展示。 (10)根据,待证公式和刚才总结的面积计算方法你想到了什么?由建立在斜边上的正方形面积等于两个正方形的面积之和想到:选定其中一个Rt,在它的两条直角边上建立的正方形,并标明相关线段的长度。 (11)证明勾股定理(把Rt中较短的直角边称为勾,较长的称为股,斜边称为弦.) 展示分割、拼接的过程,展示拼图出的效果鼓励学生代表作示范演示,再利用多媒体动画演示。 (12)赵爽弦图表现了我国古人对数学的钻研精神和聪明才智:它找到了一个:把两个较小的正方形通过分割、拼接成一个大正方形的方法,同时还以动态效果证明了勾股定理!既有理论目标又有指导实践服务于生产生活应用的意义。让学生模仿数学家的思维过程,亲身体验勾股定理的探索与验证,使学生对定理的理解更加深刻,体会数形结合思想,发展创造性思维能力. 把两个正方形拼接的底边和a+b根据加法交换律写成b+a,再建立大正方形的斜边 体验:我们看见了什么?我们想到了什么?我们知道了什么我们做到了什么?活动6 实践应用拓展提高1在ABC中,C=90°AC=21m,BC=28m 求ABC的面积;求斜边AB的长;求高CD。2一根旗杆离地面6米处折断,旗杆顶部落在离旗杆底部8米处,旗杆折断之前有多高?3试一试:你能把两个边长分别为5,12的正方形经过切割然后拼成一个正方形吗?得到的新正方形它的边长又是多少呢? (13) 对于第1、2两个题目请你根据提供的条件画出直角三角形、写出它的三边关系,完成相关计算。 对于第3题请结合网格完成结构化过程并应用勾股定理进行相关计算。加强对直角三角形的三边的图形结构与数字结构的认识,熟练应用勾股定理解决实际问题。 让学生体会数形结合思想,掌握实际应用能力.活动7 回顾小结整体感知(14)师生交流谈体会。整理思想求是。板书设计砖铺现场 等腰直角三角形 发现规律 文字描述网格图形 格点直角三角形 检验猜想 符号表达 三位一体弦图构想 任意直角三角形 证明定理 图形展示 按照从特殊到一般的方法,有区别有联系的观察分析事理,体验数形结合。