欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    低温液体储罐蒸发率计算软件开发.docx

    • 资源ID:5009693       资源大小:352.15KB        全文页数:32页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    低温液体储罐蒸发率计算软件开发.docx

    低温液体储罐蒸发率计算软件开发摘要蒸发率是衡量低温液体储运容器的重要指标。本文研究了低温液体 储罐蒸发率计算方法与试验测试方法,根据漏热量、密度、公称容积等 条件,计算低温液体的储罐蒸发率,并且分析了试验测试方法所需要的环 境条件和修正系数。对两种方法进行了比较,分析了两种方法的联系与 区别。研究了影响蒸发率的各种因素,根据计算方法与试验测试方法运 用Visual Basic语言开发出一套计算软件,软件具有根据输入的漏热 量等初始条件,计算LNG、液氮、液氧、液氩等低温液体储罐的蒸发率 功能。软件的界面友好,可操作性较强。关键词:蒸发率;计算软件;低温液体Evaporation Rates Calculation Program Development forCryogenic Liquid Storage TankAbstractEvaporation rate is an important parameter to measure cryogenic liquid storage tanks. The calculation method and the test methods to get the evaporation rate of the cryogenic liquid storage tanks were researched in this paper. According to the heat leak, density and nominal volume, the evaporation rate can be calculated. The connection and distinction between the two methods, were compared and analyzed. .The program to calculate evaporation rate was developed by using Visual Basic. This software is based on the input of heat leakage, and other initial conditions, calculate LNG, liquid nitrogen, liquid oxygen and liquid argon and other low-temperature liquid storage tank evaporation rate. The interface of the software is user-friendly and the software can be highly operative.Key word : Evaporation rate; Calculation Software; Cryogenic liquid目 录第1章前言11.1课题背景及研究目的11.2国内研究现状及发展前景2第2章 低温液体储罐蒸发率52.1低温液体储罐蒸发率的定义52.2低温液体储罐蒸发率的测定52.2.1低温液体储罐蒸发率计算方法52.2.2低温液体储罐蒸发率试验测试方法62.2.3两种方法的联系与区别92.3 本章结语11第3章 影响蒸发率的因素及物性参数123.1影响蒸发率的因素123.1.1储罐漏热量123.1.2充满率133.1.3环境温度143.1.4储罐的工作压力143.1.5温度分层143.1.6运行情况143.2各种低温液体物性参数15第4章计算软件编写184.1软件功能介绍184.2程序运行环境184.3软件说明194.3.1软件运行界面194.3.2软件计算界面194.3.3软件计算举例23第5章结论27参考文献28致谢错误!未定义书签。附件第1章前言1.1课题背景及研究目的随着国民经济的快速发展和低温技术的普及,液氮、液氧、液氩、 液氢、液氦、液化天然气等低温液体的应用日趋广泛,各行各业对储存 和输送低温液体的低温容器的需求不断增长1。尤其是近几年,随着改 革开放的深入,国外主要跨国气体公司竞相在我国建立合资企业,带来 了先进的空分设备、技术和管理,使我国低温液体的产量大幅度提高, 供应的地区和范围不断扩大,价格大幅度降低,促进了低温液体的应用, 带动了我国低温容器的发展,使低温容器成为一个新兴的行业。随着低温技术的普及,低温液体从最早的高端技术应用逐步向工业 生产和民用生活领域内渗透。低温液体适用领域的拓展也带动了低温容 器的设计及制造向着多元化方向改进。固定式的低温容器趋于规模化, 移动式的低温储运容器趋于集约化。然而气体产品有两种储存运输状态: 一种是气态产品,如氧气、氮气等,通常采用地面钢瓶充装进行储存和 运输;另一种为低温液态产品,如液态氧、液态氮、LNG等,必须采用 低温液体容器或低温液体槽车盛装,并经专用设备汽化后供给用气系统 使用。其中,作为最能体现获得与保持低温、实现低温技术应用领域必 不可少的低温液态气体储运技术,在保持气体质量、提高气体利用率、 安全性和经济性等方面,较之采用钢瓶充装储运,具有更大的优越性。 世界上业发达国家气体产品的储存,除用管网直接集中输送外,90%以 上均采用低温液体储运方式。因此,了解低温液体储运技术的发展现 状,熟悉低温液体贮运设备的结构,掌握低温液体储运过程中蒸发率的 测定与计算方法,具有非常重要的意义。低温液体(含LNG)在密闭储存过程中,由于漏热不可避免的存在, 液体不断蒸发造成压力上升,最终导致气体泄放。因此,蒸发率是衡量 低温液体储运容器的重要指标。本课题拟开发一套软件,实现LNG等低温液体储罐的蒸发率计算。1.2国内研究现状及发展前景低温绝热与储运技术是低温产生、保持和应用必不可少的技术,如 液化器的保温、低温液化气体的储存与运输、低温环境的获得与保持, 各种低温下的应用等均离不开低温绝热以及低温储运技术。因此,绝热 性能的好坏不仅涉及到各种低温应用的效果,甚至还关系到这些应用是 否可能。因此,在整个低温工程学科均广泛应用低温绝热与储运技术。 不同的绝热结构、不同的绝热材料、不同的工艺条件对绝热性能影响很 大。另外,不同类型的低温容器的绝热结构及容器结构各不相同。低温储运设备又称低温容器,是杜瓦容器、储液器、储槽(槽船)的 统称,可分成固定式和运输式两类,又可按储存介质分成液氮容器、液 氧容器、液氢容器、液氦容器、液氟溶器、液化天然气容器等。目前这 些容器设备的情况如表1.1所示:表1.1低温容器设备情况序号 类型容量及技术水平中国的创新1 .液氮、液氧、液 氩容器固定式容量:从1 L1 000 m3日蒸发率:不同容器的日蒸发率不 同,与国际水平相当。绝热结构:小型高真空多层绝热为主;大中型以真空粉末为主;特大型以纤维型堆积绝热为主。运输式公路槽车425 m3铁路槽车45 m3槽船(集装箱)15 m3 (LAr)容量:15 L85 m3 (铁路槽车) 日蒸发率:3 %50 %1. 热虹吸容器大 幅度减少输液 损失与缩短时 间。2. 特种超高压、高 冲击容器。3. 特种用途容器。4. 非金属杜瓦。5. 特大型容器。续表1.12.液氢容器绝热结构:多层绝热为主,大型采 用真空粉末绝热。3.液氦容器容量::50 L1500 L日蒸发率:趋于国际先进水平 绝热结构:多屏绝热为主,大型采 用多层绝热,亦采用LN2屏绝热结 构。1.采用高真空一多 屏(多层)。2 .液氦运输杜瓦结 构(防冲击、振动、 冷补偿结构)。3. SQUID无磁杜 瓦。4,液化天然气容器容量:100 m3、150 m3、700 m3 (贮 槽)、3040 m3 (槽车)、22 000 m3 (槽船)日蒸发率:013 % (以上3种) 绝热结构:真空粉末(贮槽)高真空多层绝热(槽车)1.防止产生涡漩与 分层的流程系统及 充注结构。2 .采用可以承受轴 向与径向冲击与位 移的端部与径向组 合支承。3 . 40 m3大容量 LNG槽车。4.第一次建成LNG 贮船。(1)我国低温容器的现状我国低温容器的应用已开始渗透到国民经济各个部门,在改善人民 的食物结构、生活质量、身体健康和提高工业水平等方面已发挥重大作 用,取得明显的社会经济效益。由于市场需求不断增长,生产厂家增多, 低温容器已发展成为一个新兴的行业。由于液氮耗量已成为一个国家工业水平的重要指标,而我国低温液 体耗量与国外相比还存在巨大差距,其应用仍处于初始阶段,在应用的许 多方面有的还未涉及,有的刚刚起步,各地区间的发展也极不平衡。另外 在低温容器的标准化工作、产品质量和价格、行业管理等方面存在诸多 问题有待解决。(2)近期发展前景今后10年内,可预计低温容器发展仍会保持良好势头,理由如下: 世界范围内兴起的技术革命中,高温超导、微电子技术、生物工 程、材料科学和新能源等研究开发,以及航天技术的发展都会促进低温 液体在新领域中的应用。 我国刚刚确立的知识创新工程8大重点领域中,农业高新技术、 人口与健康、能源、新材料、资源与环境、空间科学与技术都与低温液 体应用有关,并会促进低温容器的发展。 化工、冶金作为低温容器发展的动力,在“九五”期间的扩能改造 工程已全面启动。如1996年全国共有乙烯装置18套,生产能力420.8万 吨,“九五”改扩建规划完成后生产能力可达到973万吨。 随着气体工业的发展,从上海、江苏等东部沿海地区向东北、华 北地区扩张,再向中、西部地区漫延,会促使广大中、西部地区的液氮、 液氧价格降低,从而使这些地区发挥出巨大的市场潜力。(3)远期发展前景2010年后影响我国低温容器进一步发展的主要因素仍然是低温液 体的价格和供应问题,这取决于气体工业的发展。只有使液氮、液氧价 格降低,才能实现在食品的速冻、冻干、冷藏运输以及低温粉碎、低温 治疗、低温保存、低温加工等方面大量使用低温液体。另外液化天然气 和高温超导的开发应用一旦真正实现,会给低温容器的发展带来新的机 遇和市场4。第2章低温液体储罐蒸发率2.1低温液体储罐蒸发率的定义低温液体储罐的主要性能指标有静态蒸发率、封结真空度、真空夹 层漏率、真空夹层放气速率及真空夹层漏放气速率等。储罐静态蒸发率 能较为直观地反映储罐在使用时的保冷性能。低温液体储运设备的蒸发 率指标,是衡量其绝热性能最重要的技术参数。平常所说的低温液体储 运设备的蒸发率,是指在标准状态(0.101325MPa, 0°C)下,储存适量的低 温液体,在达到热平衡以后的蒸发速率。一般以24 h计算,故又称日蒸 发率。它是指一天(24 h)内蒸发的数量与储液容器的公称容积之比。低温液体储罐因用途、规模及地形等原因,选择的结构形式和绝热 方式各不相同,对储罐蒸发率的要求也不同。储罐蒸发率的性能指标可 以通过测试(试验法)得到,也可在实际运行中根据运行数据计算(工况计 算法)求得。2.2低温液体储罐蒸发率的测定低温液体储罐蒸发率分为计算方法和试验测试方法。2.2.1低温液体储罐蒸发率计算方法低温液体储罐的计算方法比较简单,通过低温液体的漏热量、密度 以及储液容器的公称容积来求得。实际上就是通过重量法进行计算,它 是指一天(24 h)内蒸发的数量与储液容器的公称容积之比:a = x 100 %M(2.1)其中:g 24 h内损耗的低温液体数量,KgM 容器内满容积时的低温液体质量,Kg而式中:Q “7g = M = p V故有:a = - x 100 %YP V其中:p 低温液体的密度,Kg/m3Y气化潜热,KJ/KgQ日整体漏热量,KJ/dV容器的公称容积,m3通过低温液体的密度,漏热量,气化潜热(液体比焓与气体比焓之 差)以及容器的公称容积可以计算出低温液体储罐蒸发率。这种方法适 用于低温液体容器,但由于计算简便,导致蒸发率计算有误差。2.2.2低温液体储罐蒸发率试验测试方法试验测试方法通常采用蒸汽流量测量法,该方法是通过流量计,如 湿式流量计、十式流量计(煤气表)、转子流量计等一些仪器仪表,测量蒸 发气体的流量。湿式流量计的精度比十式流量计高,但在测量液氦容器 的蒸发率时,一般不使用湿式流量计。因为仪器内的水分会污染氦气, 给以后的纯化工作带来困难。试验法通常采用液氮作为介质,国家标准 中没有给出LNG储罐蒸发率的上限指标,相关计算参考液氮的标准。方法与装置采用蒸汽流量测量法(湿式流量计)测量低温容器蒸发率的装置如 图2.1所示5:1-低温储存容器;2-气压表;3-增湿器;4-压力调节器;5-旁通阀;6-气体流量计;7-真空计规管图2.1用蒸汽流量法测量低温容器蒸发率的装置采用质量流量计测量低温容器蒸发率的装置如图2.2所示6:1-低温绝热压力容器;2-排气管阀;3-温度计;4-质量流量计图2.2气体质量流量计法测量装置图仪器设备:(1) 所用计量器具及仪器必须经过计量部门检定合格,并在有效期 内。(2) 温度计测量误差不大于0.1 °C。(3) 气压计测量误差不大于150Pa。(4) 气体质量流量计的额定流量值应与被检容器蒸发的气体流量相 适应,测量不确定度2%。测量准备:(1) 测量场地应设置红色警示标志。(2) 严禁液氢、液氧容器同时在近距离测试。(3) 流量法测量的导气管与被检容器连接的试验仪器连接处要求密 封良好,并经过检漏。(4) 测量易燃低温液体时,排气管用真空波纹管与流量计连接时, 管道必须经氮气置换,并准备好密封气囊或回收利用装置。(5) 静态蒸发率应在夹层真空度、漏率、漏放气速率测量完毕且合 格后再进行。环境条件:(1) 测量应在常温、当地大气压、无振动条件下进行。(2) 易燃介质低温绝热压力容器静态蒸发率的测量应有良好的通风 及防静电、防明火等措施。测量程序:(1) 容器几何容积的测定按GB/T18443.1进行,有效容积根据几何 容积计算。(2) 低温液体充装量应达到90%额定充满率,其液体表面需包容最 上部支撑,并静置4872h。(3) 打开与流量计相连的气体蒸发出口管道阀门,同时关闭各气、 液管道上其他阀门,当内容器表压力为零时,连接流量计。(4) 观察蒸发气体流量稳定后,每隔一定时间记录一次流量计示值, 按时记录环境温度、大气压力、流量计入口温度。(5) 稳定后连续测量不少于24h。数据处理:试验测试方法通流量计测量的气体流量是在一定的温度、压力条件 下气体流量。由于测量时的温度、压力等条件不同,尽管从流量计测得 的气体流量相同,但实际的质量是不相同的。因此,需做必要的修正。 采用湿式流量计测量静态蒸发率由公式:a =X 2 7 3XP X Tn X 1 0(%0 nV T 0.1 0 1 3 2 5 T - T2(2 2)式中,qV为蒸发气体体积流量日平均值,m3/ d ;中为气体修正系数,采用流量计的技术说明书给定值;n为标准状态下(0.101 325MPa ,0 °C)液化气体的气、液体积比,液 氮为643;V为被测容器的有效体积,m3;p为被测气体的绝对压力,MPa;T为流量计入口温度;T1为环境温度;T2为低温液体温度,Tn为温度修正值。采用质量流量计测定在单位时间内由低温绝热压力容器中液体挥发 后通过质量流量计的气体质量流量,计算出静态蒸发率7:a =¥ x n x 100 %(2.3)0 nV T - T表2.1计算结果介质种类氮氧氩氢氦氟甲烷液化天然气气体体积比n643800780788700484591591温度修正值Tn/K216203206273289208181182通过试验测试法计算储罐蒸发率需要所以计量器具及仪器必须经过 计量部门检定合格,并在有效期内,温度计测量误差不大于0.1C,气压 计测量误差不大于150Pa。2.2.3两种方法的联系与区别试验法与计算法都是对储罐的绝热性能一一蒸发率指标进行判定, 但得出的结果有所区别:(1) 试验法是严格遵照国家标准进行,对试验工况进行了修正,测 试的是储罐的静态标准蒸发率。而计算法是在运行工况进行的计算,得 到的是平均运行工况下的储罐实际蒸发率8】。(2) 试验法通常采用液氮作为介质,而计算法中针对的是LNG介 质。介质不同,蒸发率也不同。(3) 试验法适用于预冷保冷阶段,计算法适合于投产的初期,且对 日用气量有要求。(4) 试验法需一定的费用(液氮、测试单位、仪表等)和时间,操作 较为繁琐。计算法只需取站内日常记录数据进行分析和计算,操作简单 方便。(5) 试验法与实际情况有一定的差距,而工况计算法更接近实际情 况,对日常工作的指导意义更大。2.3本章结语储罐静态蒸发率是衡量储罐绝热性能的重要指标,从不同角度了解 储罐蒸发率,有利于LNG气化站内安全有效的运营管理。试验法和计 算法各有特点,应结合使用。国家标准中没有给出LNG储罐蒸发率的 上限指标湘关企业只能参考液氮的标准。第3章影响蒸发率的因素及物性参数3.1影响蒸发率的因素LNG等低温液体由于其易燃易爆性,在运输过程中需要无损储存。 无损储存时间是衡量蒸发率的重要指标卬。影响无损储存时间的因素很 多,主要有储罐漏热量、充满率、环境温度、容器的使用压力、温度分 层等。3.1. 1储罐漏热量周围环境通过低温容器的绝热结构和机械构件导入低温液体的总热 流,可由在单位时间内从容器中蒸发出来的低温液体的数量来确定。日 蒸发率是衡量低温容器绝热质量的重要指标之一。小型低温容器蒸发的介质量可用称重法来测量,或者测定从容器中 排出的蒸汽量来确定。大容积储罐的蒸发率只能用后一种方法来测定。低温容器的蒸发率的测定条件为1.013x105Pa大气压力和20°C气温 下进行。由于我国各地区、各季节的气象条件相差悬殊,许多低温容器 的蒸发率的测量工作往往是在不相同的条件下进行的。为评价低温容器 的绝热质量,应有一个不受地点和条件变化影响的统一的测量标准。可 以分析周围环境大气压力和气温变化对低温容器蒸发率的影响,对低温 容器的蒸发率测量值进行气压、温度校正。低温容器的标准蒸发率可以 根据式(3.1)计算。(3.1)a = 24也中门 丫 x 100 %Vp T h上式中,M为每小时蒸发的液体质量;Ve为满容积时液体质量;甲p为气压校正系数;门T为气温校正系数;y h为液位校正系数。日蒸发率是衡量低温容器绝热性能的主要指标1。当容器充注低温 液体并密封开始无损储存后,由于漏热量的影响,一方面由于系统内能 的增加,温度上升,而使其饱和压力增加;另一方面,由于温度上升, 而使液体的体积膨胀,使气相空间减少,因液体体积的不可压缩性而使 压力急剧增大。随着日蒸发率的增加,压力升高速度增加,达到低温容 器最高使用压力时间将缩短,即无损储存时间减少。因此提高低温容器 的绝热性能,减少日蒸发率是延长无损储存时间的主要途径之一。目前,对于低温类液化气体容器的绝热性能,国家有关行业标准和 专业标准如ZBJ76003固定式真空粉末绝热低温液体贮槽和JB/T6897 低温液体槽车规定的指标,是以日蒸发率的形式出现的uh。根据日 蒸发率可以利用式(3-2)换算出储罐总漏热量。(3.2)Q = ap Vy86400上式中,Q为漏热量;a为蒸发率;p为介质密度;中为充满率;V为储罐容积;y为介质汽化潜热。3.1.2充满率由于初始充满率的不同,对于同一容器也会产生单位液体体积受热 量不同,随着容器中充满率增加,整个容器的热容增大,达到热平衡时 两相压力增加的速率减少。但是,由于液体热膨胀,使气相空间减少, 使压力增长速度加快。这一矛盾的结果,使得在充满率过大或过小时均 使无损储存时间下降,因此存在一个最佳充满率。充满率高时,随着热 量的传入,液体的体积膨胀使液体在容器中占有的容积愈来愈大,这时 会使气体在界面处冷凝。而充满率很低时,热量传入引起液体蒸发大于 液体体积的膨胀,结果使液体的体积变小,直至完全汽化Mo3.1.3环境温度环境温度对漏热和蒸发率的影响与传导传热、辐射传热在整个漏热 中所占的比例有关。如果已知各种漏热所占的比例,则可以根据传热学 的基本定律,算出环境温度变化对蒸发率的影响13。设辐射漏热占总漏 热的比例为f,传导传热所占的比例为g,f十g=1。设环境温度为T2时 的蒸发率为门2,则环境温度为T3时的蒸发率为门3,可由传热学基本定律 导出:T 4 - T 4T - T/c C、门=n f( 31 )+ g( 3 1)(3-3)32 T 4 - T 4 T - T3.1.4储罐的工作压力工作压力提高,能使无损储存时间增加,但又造成容器壁厚增加, 从而使容器重量增加,热容量也增加,成本提高。对于运输设备则降低 了有效载重量。因此,合理选择工作压力也是槽车储罐优化设计的重要 内容之一。3.1.5温度分层低温液体储存中温度分层不仅使参数的计算带来困难,而且会使低 温容器使用时性能恶化,表面压力急剧上升导致气体压力急剧上升。温 度分层的现象不仅与液体的种类和受热量有关,在很大程度上还与充满 率有关。3.1.6运行情况槽车不同的运行状态,对内部LNG的热力变化过程有重要的影响。槽车带液停车时间较长时,储罐内容易产生温度分层的情况。槽车在行 驶过程中,虽然内部设有防晃板,但是局部的晃动也破坏温度分层的基 本条件,使罐内温度保持一致,对稳定槽车压力有利。3.2各种低温液体物性参数以下六张表格分别为甲烷、乙烷、丙烷、氮气、氧气、氩气14的饱 和液体及蒸气热物性数据15。表3.1饱和液体、蒸气热物性数据(甲烷)温度/K压力/MPa液体密度/(kg/ m3)液体比焓/(kJ/kg)蒸气比焓/(kJ/kg)液体比熵/(kJ/kgK)蒸气比熵/ (kJ/kg K)980.027877441.59-333.39199.734.54669.98661000.034495438.89-326.63203.444.61479.91541020.042302436.15-319.84207.104.68189.84781040.051441433.39-313.00210.704.74809.78351060.062063430.59-306.13214.234.81329.72231080.074324427.76-299.22217.704.87759.66381100.088389424.89-292.28221.114.94089.6080111.630.101325422.53-286.59223.834.99199.56431120.10443422.00-285.31224.445.00339.5546表3.2饱和液体、蒸气热物性数据(乙烷)温度/K压力/MPa液体密度/ (kg/ m3)液体比焓/ (kJ/kg)蒸气比焓/ (kJ/kg)液体比熵/ (kJ/kgK)蒸气比熵/ (kJ/kgK)90.351.10E-06651.92176.84771.912.56029.1467953.60E-06646.83187.38777.652.67398.88431000.000011641.35198.73783.822.79048.63591050.00003635.86210.11789.992.90158.41741100.000075630.35221.52796.173.00768.22351150.000169624.83232.95802.353.10928.05181200.000354619.29244.4808.543.20677.89881250.001291613.73255.87814.753.30037.76221300.002275608.14267.37820.963.39057.6399表3.3饱和液体、蒸气热物性数据(丙烷)温度/K压力/MPa液体密度/ (kg/ m3)液体比焓/(kJ/kg)蒸气比焓/(kJ/kg)液体比熵/(kJ/kgK)蒸气比熵/ (kJ/kg K)85.473.00E-10732.9124.92690.021.83788.3548901.50E-09728.37133.56693.581.97238.0953957.50E-09723.37143.13697.782.07587.84131003.20E-08718.36152.74702.232.14737.61631051.20E-07713.34162.37706.882.26827.41631103.90E-07708.32172.03711.712.35817.23771151.10E-06703.29181.73716.712.44437.07781203.10E-06698.25191.46721.782.52716.93431257.60E-06693.2201.23726.982.60696.8051表3.4饱和液体、蒸气热物性数据(氮气)温度/K压力/MPa液体密度/ (kg/ m3)液体比焓/ (kJ/kg)蒸气比焓/ (kJ/kg)液体比熵/ (kJ/kgK)蒸气比熵/ (kJ/kgK)710.044572836.58-134.6271.9312.66275.5748720.051265832.33-132.5772.7912.69135.5463730.058715828.02-130.5173.6352.71965.5188740.066979823.65-128.4574.4632.74755.4922750.076116819.22-126.3975.2752.7755.4664760.086183814.74-124.3276.072.80225.4414770.097241810.2-122.2576.8472.82915.417277.350.101325808.61-121.5377.1132.83845.409780.10935805.6-120.1877.6062.85515.3937表3.5饱和液体、蒸气热物性数据(氧气)温度/K压力/MPa液体密度/ (kg/ m3)液体比焓/(kJ/kg)蒸气比焓/(kJ/kg)液体比熵/(kJ/kgK)蒸气比熵/ (kJ/kg K)600.0007261282.0-184.1954.1882.25716.2301650.0023351259.7-175.8158.6602.39125.9985700.0062621237.0-167.4263.0922.51565.8086750.0145471213.9-159.0267.4542.63135.6510800.0301231190.5-150.6171.6952.73975.5185850.0568311166.6-142.1875.7492.84175.4055900.093501142.1-133.6979.5512.93835.3076950.163081116.9-125.1283.0393.03035.22151000.254001090.9-116.4586.1553.11855.1445表3.6饱和液体、蒸气热物性数据(氩气)温度/K压力/MPa液体密度/ (kg/ m3)液体比焓/ (kJ/kg)蒸气比焓/ (kJ/kg)液体比熵/ (kJ/kgK)蒸气比熵/ (kJ/kgK)83.8040.0689611417.2-121.0542.5901.33423.2869850.0789831410.1-119.7742.9781.34933.2640900.133611379.7-114.3544.4961.41083.1758950.213211348.1-108.8245.8391.47003.09791000.324001315.0-103.1646.9691.52723.02851050.472581280.3-97.33347.8291.58292.96541100.665741243.7-91.32048.3461.63742.90711150.910461204.9-85.08148.4381.69112.85211201.21391163.4-78.56248.0051.74442.7991根据参考以上各项低温液体物性数据,从而可以得到计算软件的各 种初始条件:(1)取 LNG,计算温度 110K,压力 0.088389MPa(2)取液氮,计算温度77 K,压力0.097241MPa(3)取液氧,计算温度90K,压力0.099350MPa(4)取液氩,计算温度85K,压力0.078983MPa第4章计算软件编写4.1软件功能介绍本设计所编写的程序主要是通过漏热量,气化潜热,密度以及公称 容积来计算日蒸发率的计算机算法。在一定的温度压力条件下计算各种 低温液体储罐蒸发率。具体的说,程序可以实现以下几个功能:(1)通过代入各种初始条件(漏热量,气化潜热,密度,公称容积) 用低温液体储罐蒸发率计算方法来得到蒸发率,其中计算初始数据可以 采用手动输入或者调用参考数据进行计算,通过简单的计算得出蒸发率 计算结果,软件可以计算LNG、液氮、液氧与液氩等低温液体储罐的蒸 发率功能。(2)在计算液化天然气的储罐蒸发率时,由于液化天然气含有各种 组分,此时可以通过输入液化天然气各种组分比来计算液化天然气的气 化潜热以及漏热量从而进一步的计算液化天然气的储罐蒸发率。(3)通过代入各种修正系数,以及各种测量值可以通过低温液体储 罐蒸发率试验测试方法计算出低温液体的静态蒸发率,具体公式见第2 章试验测试方法。软件有计算和保存功能,能将数据精确到小数点以后2位,程序设 计相对较简单,可以进行后续的开发和维护。4.2程序运行环境(1)开发环境:Windows XP;(2)开发工具:Microsoft Visual Studio;(3)编程语言:Visual Basic;(4)运行环境:Windows95及以上版本(可独立运行于Windows95 及以上版本,包括 Windows98、Windows2000、Windows me、Windows XP 等);(5)硬件条件:PentiumH以上微机及兼容机。4.3软件说明软件生成“.exe”文件,便于输入数据和运行程序,且可视化较好, 便于操作。可以根据漏热量、密度、气化潜热、公称容积计算低温液体 储罐蒸发率。试验方法中可以根据实验数据来计算低温液体蒸发率。4.3.1软件运行界面软件界面(图4.1)主要分为5个计算,LNG、液氮、液氧、液氩、 试验方法。界面友好,可操作型较强。图4.1软件界面4.3.2软件计算界面软件计算界面比较简单,分别为相应的5种计算,LNG、液氮、液 氧、液氩、试验方法。软件可以进行数据输入以及运算,另外还有数据 保存和手动修改功能,操作性较强。图4.2计算LNG的储罐蒸发率液氮计算图4.4计算液氮的储罐蒸发率图4.7低温液体储罐蒸发率试验方法(液氮)计算得到的低温液体储罐蒸发率均精确到小数点后两位,程序经运 行调试运行良好,界面友好。根据任务书要求能通过输入的漏热量等初 始条件,计算LNG、液氮、液氧、液氩等低温液体储罐的蒸发率。计算 结果能保存,方便以后的计算和维护。4.3.3软件计算举例以下用LNG计算说明一下软件计算功能。先从软件运行界面点击 “LNG”进入“ LNG计算”界面,然后单击“数据代入”即可以弹出 LNG组分计算的界面。通过选择LNG各种组分(甲烷、乙烷、丙烷等), 然后输入选择组分的百分比,单击“计算”,即可以通过简单的运算得到 该组分下LNG的气化潜热以及密度,计算界面如下:图4.8组分计算演示计算得到数据后单击“代入”,便可将数据代入LNG计算界面,在 输入数据(比如漏热量200W,公称容积100m3)计算得到结果,然后保 存,退出程序。图4.9 LNG计算演示程序可以保存多组数据结果,方便数据记录以及后续的计算,总的 来说程序简单易懂,可操作性好,但页面稍显粗糙,

    注意事项

    本文(低温液体储罐蒸发率计算软件开发.docx)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开