欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    标准的变化与初中数学(王尚志).ppt

    • 资源ID:4983977       资源大小:3.50MB        全文页数:112页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    标准的变化与初中数学(王尚志).ppt

    数学课程标准的主要变化整体把握初中数学课程,首都师范大学王尚志,关键词,问题 学生主体 教师主导 过程目标 整体把握数学课程抓住本质,“What is the key in math and math education?”在数学和数学教育中,什么最重要?定义、概念,定理、结论,例题、习题,等等 The problem is the key.问题是最重要的,问题?,不增加学习时间和强度,有什么办法提高学习、教学效率?如何让学生喜欢您喜欢数学?如何调动学生学习激情、主动精神?如何帮助学生学会学习?从学会会学?“做得快”是否是数学教育基本追求?,问题?,数学教师如何从大量的作业中解脱出来?如何做好学困生的转化?如何提高学生的数学兴趣?如何进行数学建模?如何培养学生的数学思维能力?如何在课堂中把数学的基本活动经验做到最好?数学教学中女生往往比男生难教一些,有好的方法吗?提高数学课堂教学效率的方法有哪些,请指点?什么样的一节数学课才能称为好课?经常听到孩子和家长说,数学没考好就是因为粗心,请问粗心是如何形成的,有好的克服方法吗?农村教师经常遇到留守儿童,对他们的教育有好的方法吗?初中数学中到底包含了那些数学思想,如何把数学思想方法渗透在数学教学中?,问题?,数学课程 初中数学中到底包含了那些数学思想,如何把数学思想方法渗透在数学教学中?数学教学 如何在课堂中把数学的基本活动经验做到最好?提高数学课堂教学效率的方法有哪些,请指点?什么样的一节数学课才能称为好课?数学教师如何从大量的作业中解脱出来?如何进行数学建模?,问题?,数学学习 如何提高学生的数学兴趣?如何做好学困生的转化?如何培养学生的数学思维能力?经常听到孩子和家长说,数学没考好就是因为粗心,请问粗心是如何形成的,有好的克服方法吗?数学教学中女生往往比男生难教一些,有好的方法吗?一般教育 农村教师经常遇到留守儿童,对他们的教育有好的方法吗?,目 录,一、从一个案例说起二、背景三、课程标准主要变化 重点:理念完善、目标变化、核心概念四、整体把握初中数学课程,从一节几何复习课 什么是良好数学教育,平行四边形复习课教学内容 本节课是在学生学习完平行四边形的性质和判定后,教师设计的一节复习课。,平行四边形复习课,教学目标1、依托平行四边形一章的内容,帮助学生学会梳理知识。2、依托平行四边形一章的内容,帮助学生学会如何抓住本质。3、帮助学生进一步掌握平行四边形性质。4、让学生经历独立学习和合作学习过程。,平行四边形复习课,教学形式 本节课教师主要采用独立学习与小组合作结合方式进行教学活动。主要步骤:1、教师将全班同学进行分组;2、确定需要研讨的问题串;3、提出学生在独立思考的要求;4、分工合作、交流提升、集体分享等过程;最后,通过学生的学习,分享结果,形成一个资源包,从而保证每个学生都能有所收获。,平行四边形复习课,研讨问题串研讨要求1、每个小组从教材、教参和相关材料中,收集平行四边形判定的充分必要条件(教师提前讲明什么是充分必要条件);2、每个小组所找到的一系列充要条件进行分类,并说明自己小组分类的标准和原则。3、每个小组在自己所找的充要条件中挑一个最喜欢的、最重要的条件,并说明喜欢它的原因,通过完成以下两项工作说明:(1)它可以很简单的推出其他的充要条件;(2)在所有的习题和例题中能找到3-5个题目说明用这个出发点解决问题很方便;4、(选做题)让学生讨论平行四边形和学过的其他图形有什么关系,并进行相应的整理。问题串设计辅助说明:,平行四边形复习课,问题串设计辅助说明:1、初中学生能掌握的平行四边形判定的充要条件常见的有七个,可以分为三类,分类原则:用边的性质刻画,用角性质刻画,用对角线性质刻画。如图所示:用边性质刻画的条件两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;用角性质刻画的条件两组对角分别相等的四边形是平行四边形;一个角和它相邻的两个角都互补的四边形是平行四边形;用对角线性质刻画的条件对角线互相平分的四边形是平行四边形;对角线的交点是它的对称中心的四边形是平行四边形;2、教师让学生自己通过不同渠道对找出的充要条件,不要求全面;提出分类的原则有利于学生对平行四边形这一章的知识进行梳理,更容易整体把握此部分数学知识的本质。教师3、要求学生找出自己最喜欢的,并认为最重要的条件,不要求一致,重要的是提出支持的理由,可以发挥学生的想象力,激发学生的学习兴趣。学生往往喜欢挑战有难度的题目。,平行四边形复习课,合作的任务落实 教师对小组的每个成员作用都做了要求,每个人都要参与,要贡献。教师给学生十天思考和查阅的时间,完成每个小组的任务。教师要求以小组为单位进行汇报,汇报时要把自己的观点、思考、收获表达清楚,方式生动、活泼,结果要公布,对其他小组的看法提出补充、评论和质疑。,平行四边形复习课,成果展示 教师最后用1-2节课开展平行四边形判定充要条件的展示交流活动。展示活动非常精彩,每个小组各抒己见,总结的也都很合理。每个小组都做得很好,其中,有一个小组让我们印象特别深刻。组长:我们做喜欢的是对角线的交点是它的对称中心。组员:其他所有的条件都可以由它转出来。说着台前的小组成员开始做旋转演示。下一台阵掌声响起,台上的小组成员感觉很开心,很骄傲。,平行四边形复习课,评论:学生感兴趣,每个人都能参与进来。这节课的设计真的让学生开动脑筋思考,想问题,印象深刻。教学设计不是仅仅以让学生“学会”为目的,而是以学生“会学”为目的的。小组合作不仅仅是留于形式而是真正有价值的。,背 景,自上而下,2006年6月5日 胡锦涛,要改变单纯灌输式的教育方法,探索创新型教育的方式方法,在尊重教师主导作用的同时,更加注重培育学生的主动精神,鼓励学生的创造性思维。要把中小学生从沉重的课业负担下解放出来,激发他们的好奇心和探究精神,使广大青少年在发掘兴趣和潜能的基础上全面发展。,2007年08月31日 胡锦涛,希望广大教师勇于创新、奋发进取。教师从事的是创造性工作。教师富有创新精神,才能培养出创新人才。广大教师要踊跃投身教育创新实践,积极探索教育教学规律,更新教育观念,改革教学内容、方法、手段,注重培育学生的主动精神,鼓励学生的创造性思维,引导学生在发掘兴趣和潜能的基础上全面发展,努力培养适应社会主义现代化建设需要、具有创新精神和实践能力的一代新人。,2005年9月9日 温家宝 要实行启发式教育,把学生作为教学的中心,使学生在学习的整个过程中保持着主动性,主动地提出问题,主动地思考问题,主动去发现,主动去探索。启发式教育的核心就是要培养学生的独立思考和创新思维。,2005年9月10日 温家宝“让学生自己去发现问题,讨论问题,解决问题,这种做法非常好。发现一个问题比解决一个问题更重要。一个人要成才,就要学会独立思考,学会创造思维。这就是启发式教育。”,2005年9月10日 温家宝“给孩子们讲的应该尽量少些。而引导他们去发现的应该尽量多些,这样就慢慢使学生懂得自己去钻研,自己去提高学习知识的本领。”,2006年07月 温家宝总理 一所好的学校,不在高楼大厦,不在权威的讲坛,也不在那些张扬的东西,而在有自己独特的灵魂,这就是独立的思考、自由的表达。要通过讨论与交流,师生共进,教学相长,形成一种独具特色的学术氛围。,温家宝:百年大计教育为本20090104,关于教学改革问题。对于教学改革,教师、学生包括家长都反映强烈,希望课程设置更贴近学生的实际,贴近社会的实际,要求减轻学生负担。现在,在教学中我们比较注重认知,认知是教学的一部分,就是学习。在认知方法上我们还有缺陷,主要是灌输。其实,认知应该是启发,教学生学会如何学习,掌握认知的手段,而不仅在知识的本身。学生不仅要学会知识,还要学会动手,学会动脑,学会做事,学会生存,学会与别人共同生活,这是整个教育和教学改革的内容。,解放学生,不是不去管他们,让他们去玩,而是给他们留下了解社会的时间,留下思考的时间,留下动手的时间。我最近常思考,从自己的经历感受到,有些东西单从老师那里是学不来的,就是人的思维、人的理想、人的创造精神、人的道德准则。这些,学校给予的是启蒙教育,但更重要的要靠自己学习。学和思的结合,行和知的结合,对于学生来讲非常重要,人的理想和思维,老师是不能手把手教出来的,而恰恰理想和思维决定人的一生。这不是分数能代表的。要围绕加强素质教育、多出人才,转变教育观念,深化教育改革。要认真思考我们为什么培养不出更多的杰出人才?从而对教育体制、办学模式以及小学、中学、大学的教学改革进行深入研究,整体谋划。,奥巴马,呼吁各州要制定新的评估标准:不只是考查学生是否能准确填写标准答案的能力,而是能考核他们是否掌握了问题解决、批判思维、创业及创新能力等21世纪基本能力。美国的未来取决于教师。现在我呼吁新一代美国人挺身而出,到教室为国效力。如果你想把你才智和精神发挥到极致,如果你想留下一份永恒的遗产而出人投地的话,那么加入教师队伍吧,美国需要你!,国家在行动,国务院成立了以温家宝总理为组长的国家中长期教育改革与发展规划纲要领导小组 国家基础教育课程教材咨询、工作专家委员会 国家教师教育专家委员会 将成立招生考试专家委员会,背 景,最大的动力 教育的理想、追求,背 景,过程好了结果不会差 学生动起来结果会更好!,背 景,认识数学课程变化几个基本维度:社会进步,科学技术发展,数学发展,社会需要,21世纪基本能力,等等 整体把握课程的三个基本角度:数学角度 教育角度 学生角度,Todays economy means multiple jobs and on-going development to build transferable skills and competencies,20th Century,21st Century,1 2 Jobs,10 15 Jobs,Critical Thinking Across Disciplines,Integration of 21st Century Skills intoSubject Matter Mastery,Mastery ofOne Field,SubjectMatterMastery,Number ofJobs:,JobRequirement:,Teaching Model:,SubjectMatterMastery,Integration of 21stCentury Skills intoSubject MatterMastery,Assessment Model:,5,Are we asking the right questions?,Why 21st Century Skills?,Are our students critical thinkers and problem solvers?我们学生是否具有批判思考和问题解决的人?,Are our students globally aware?我们学生是否具有全球意识?,Are our students self-directed?我们学生是否具有自我定向能力?,Are our students good collaborators?我们学生是否是好的合作者?,Are we asking the right questions?,Why 21st Century Skills?,Are our students information and technology literate?我们学生是否拥有信息技术意识?,Are our students flexible and adaptable?我们学生是否具有灵活和适应能力?,Are our students innovative?我们学生是否具有创造意识和能力?,Are our students effective communicators?我们学生能否进行有效交流能力?,P21 Members,Why 21st Century Skills?,对雇佣的高中毕业生,什么能力对职业成功是最重要的?,Why 21st Century Skills?,对你们最近雇佣的高中毕业生,他们最缺乏的是什么?,Why 21st Century Skills?,对于你们将要雇佣的本科毕业生,那些能力和基本知识是最重要的?What applied skills and basic knowledge are most important for those you will hire with a four-year college diploma?,对你们近期雇佣的本科毕业生,如何评价他们的这些能力?Of the four-year graduates you recently hired,how do they rate?,Why 21st Century Skills?,Why 21st Century Skills?,在今后五年中,那些能力需要重点提升?What skills and content areas will be growing in importance in the next five years?,Overview:21st Century Competencies and Skills,21世纪基本能力几种看法,基本结构,THE 4 PILLARS OF A COMPETENCY-BASED EDUCATION,Learning to Know(学会认知)Learning to Do(学会做事)Learning to Live and Work Together(学会合作)Learning to Be(学会做人)Source:Report presented to UNESCO by the International Commission on Education for the 21st Century“Learning:the treasure within”,1996.,背 景,数学是研究现实中数量关系和空间形式的科学。恩格斯数学是研究数量关系和空间形式的科学 前苏联“数学的内容、方法、意义”数学是研究模式与秩序的科学。“2061”计划提出把数学科学与自然科学的并列。“2061”计划,背 景,数学是科学,数学是理论,数学是语言,数学是工具,数学是技术,数学是文化,数学是伙伴,,背 景,数学的基本特征:抽象性严格性应用广泛性,背 景,两千多年来,人们一直认为每一个受教育者都必须具备一定的数学知识。但是,今天,数学教育的传统地位却陷入了严重的危机之中,而且遗憾的是数学工作者要对此负一定的责任。数学教学有时竟演变成空洞的解题训练,这种训练虽然可以提高形式推理的能力,但却不能导致真正的理解与深入的独立思考。数学研究已经出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。不过,这种状况不能证明紧缩数学教育政策是合理的。相反,那些醒悟到培养思维重要性的人,必然会采取完全不同的做法,即更加重视和加强数学教学。教师、学生和一般受过教育的人都要求数学家有一个建设性的改造,而不是听其自然,其目的是要真正理解数学是一个有机的整体,是科学思考与行动的基础。R.柯朗(1941年,什么是数学的序言),受学校教育的影响,一般人认为数学仅仅是对科学家、工程师,或许还有金融家才有用的一系列技巧。这样的教育导致了对这门学科的厌恶和对它的忽视。由于学校数学教学的影响,这些权威性的诊断和流行的看法,竟被认为是正确的!数学学科并不是一系列的技巧,这些技巧只不过是它微不足道的方面:它们远不能代表数学,就如同调配颜色远不能当作绘画一样。技巧是将数学的激情、推理、美和深刻的内涵剥落后的产物。如果我们对数学的本质有一定的了解,就会认识到数学在形成现代生活和思想中起重要作用这一断言并不是天方夜谭。M.克莱因,背 景,二、课程标准主要变化,结构调整理念完善目标变化核心概念内容增减,结构调整,研读标准时,需要对数学课程标准有一个整体认识。标准由四部分组成:前言;课程目标;课程内容;实施建议。另外有两个附录,附录1:有关行为动词分类;附录2:课程内容与实施建议中的实例。建立起对标准整体的基本了解,才容易体会标准变化,及变化的背景。,结构调整,在保持标准(实验稿)基本体例不变的前提下,在结构上做了以下调整。重新撰写“前言”。在“前言”部分除了修改了对数学的意义与价值,数学教育的功能,课程基本理念和课程设计思路的表述。,结构调整,增加了“课程性质”:指出“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性”,“义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础”;还特别强调了“数学课程能使学生掌握必备的基础知识和基本技能,培养学生的抽象思维和推理能力,培养学生的创新意识和实践能力”,明确了义务教育阶段数学课程在提高公民素质中的重要作用。,结构调整,整合三个学段的“实施建议”。为了避免行文的重复、进一步突出义务教育阶段数学教育的完整性,标准(修订稿)将原来分三个学段撰写的实施建议进行了整合,统一撰写了教学建议、评价建议和教材编写建议。,结构调整,增加了“课程资源开发与利用建议”教师创新的平台:用教材教、不是教教材。数字学校 校本课程“双课堂”课程虚拟课程+真实课堂 特色学校新管理机制 新课程体系 新教学模式,结构的调整,规范了“行为动词”增加了课程目标中的有关“行为动词”的解释,明确行为动词分为两类:一类是描述结果目标的行为动词,包括“了解、理解、掌握、运用”等术语;一类是描述过程目标的行为动词,包括“经历、体验、探索”等术语。标准(修订稿)将这些行为动词和相关的同义词的解释统一列入附录。增加“案例”为了更准确说明内容的目标和要求,增加了案例的数量,并对案例与课程标准之间关系给出了详细的说明,有助于帮助教材编写者、以及教学实施者能够更好地理解课程标准。,数学教育基本理念,修订稿将原来的6条基本理念整合成为现在的5条,具体表述做了一些调整。如,关于数学课程与教学的总体要求是:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。获得良好的数学教育具有广泛而深刻的含义,是对所有学生在学习数学方面提出的目标,也是对数学教育者提出的要求。面对每一个人的数学教育既是一个基本的要求,也是必需的要求。,数学教育基本理念,2、课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。,数学教育基本理念,“重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。”三角形中位线定理教学,数学教育基本理念,3教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。,数学教育基本理念,“数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。”“教师要发挥主导作用。”预设与生成:设计、实施、反思,数学教育基本理念,4学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。,数学教育基本理念,全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。学习过的内容如何记住,忘了怎么办?哪些内容学生自己可以学懂 哪些内容需要老师指点、用什么方式指点 哪些内容现阶段讲了学生也不易明白,数学教育基本理念,5信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。,数学教育基本理念,信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。PPT课件 工具几何画板、Z+Z超几何画板等 网络双课堂 其他技术手机?,课程目标,关于数学课程总体目标主要变化 结构:总体目标:总纲,四个方面:知识技能,数学思考,问题解决,情感态度 分学段目标,课程目标,关于数学课程总体目标主要变化 从双基到四基:标准(修订稿)明确提出,通过义务教育阶段的数学学习,学生能“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想和基本活动经验”。为什么从双基到四基?,课程目标,关于数学课程总体目标主要变化背景:从知识为本以人为本的变化 双基是否是数学教育的全部?除了双基还应该包含什么?数学发展、数学家研究、学生数学学习本质上一样吗?什么是判定数学基本思想的标准?1、影响数学产生、发展 2、体现学习数学基本价值 基本思想抽象、推理、模型 是不是数学都可以“教”?过程性目标 应该落在哪儿?经验积累:学习数学获取知识经验 数学地思考问题经验 运用数学解决问题经验,课程目标,基本数学思想:抽象、推理、模型 举例:一个具体“鸡兔同笼”问题 可否把所有“鸡兔同笼”问题综合成一个“数学问题”?哪些数学问题与“鸡兔同笼”类似?这些问题有哪些共性?二元一次方程组问题 三元一次方程组问题 n元一次方程组问题 线性代数,课程目标,关于数学课程总体目标主要变化 从“分析问题和解决问题”“发现、提出问题,分析问题和解决问题”:明确提出“发现问题、提出问题”能力的培养。解决问题是当代数学教育的重要形式。标准(修订稿)将原来总目标中的“解决问题”改为“问题解决”,是为了更加重视学生问题意识培养,以及解决问题综合能力的提高。强调学生在具体的情境中发现问题,提出问题,提高分析问题和解决问题的能力。发现问题和提出问题是学生数学问题意识的具体体现。分析和解决问题固然重要,而发现和提出问题更是培养学生创新意识所需要的。,课程目标,关于数学课程总体目标主要变化 从“分析问题和解决问题”“发现、提出问题,分析问题和解决问题”:“创新”培养应该从什么时间开始?义务教育阶段“应以什么为载体”培养创新?“What is the key in math and math education?”The problem is the key.以“问题”为载体激发、培养学生的创新精神和能力,课程目标,北京“初中建设工程”如何学校改变学校面貌?校长办学思想基本理念 领导团队建设 校本教研制度 教师专业成长 整体把握数学课程 全面读懂学生 全面运用评价 抓住突破点改进教学,课程目标,北京“初中建设工程”如何学校改变学校面貌?突破点如何提升学生计算能力?分析影响计算能力数学载体和问题?整数运算乘法口诀 分数运算 负数运算 代数式运算 运算应用 运算的通性通法 运算的习惯 等等,课程目标,北京“初中建设工程”如何学校改变学校面貌?突破点如何提升学生计算能力?分析影响计算能力数学载体和问题?负数运算 为什么“负数运算”错误比较多?粗心不认真马虎粗心?教师重视不起来?中考分析?找出与“负数运算”内容 给出具体教学、学习建议,课程目标学习能力,著名数学家华罗庚 能把书读厚 能把书读薄,核心概念,标准提出了10个核心概念。这就是:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。核心概念桥 基础知识、基本技能基本思想、基本活动经验,核心概念,10个核心概念是整个数学课程的核心概念。应用意识和创新意识是“上位”核心,是所有课程需要关注的。在数与代数中,需要更加关注:数感符号意识运算能力推理能力 符号意识运算能力模型思想应用意识,核心概念,10个核心概念是整个数学课程的核心概念。应用意识和创新意识是“上位”核心,是所有课程需要关注的。在图形与几何中,需要更加关注:空间观念几何直观推理能力 在统计与概率中,需要更加关注:数据分析观念推理能力应用意识 在综合与实践中,需要更加关注:符号意识模型思想应用意识创新意识,核心概念,数感 主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。实例:2的算术根54开81次方有理指数幂,核心概念,符号意识 主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。符号梳理:数、字母符号、运算符号、关系符号、图形符号、逻辑符号、结构符号,核心概念,空间观念 主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。实例:长方体三视图 维度,核心概念,几何直观 主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。实例:看图说理中位线定理勾股定理,核心概念,数据分析观念 包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律,数据分析是统计的核心。实例:十八岁人口数估计,核心概念,运算能力 主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。实例:公式是算出来的基本公式二项式定理,核心概念,推理能力 推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。,核心概念,模型思想 模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。,核心概念,应用意识 有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。,核心概念,创新意识 创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。,课程内容变化,第一学段 内容总体上修改不大,增删内容大致相当,数与代数内容略有增加,统计与概率内容有明显的减少。统计与概率领域内容大幅减少,由原来的11条具体要求,减少为现在的3条。全部删除了有关概率内容的“不确定现象”的3条,其中部分内容移到第二学段。实践表明,在第一学段学生理解不确定现象有难度,不容易理解事件发生的可能性。这一学段学生应主要学习和掌握确定的量,开始理解和掌握自然数、分数和小数。因此,将不确定现象的描述后移。对于统计内容也降低了难度,平均数、条形统计图等内容也移到第二学段学习。,课程内容变化,第一学段,内容总体上修改不大,增删内容大致相当,数与代数内容略有增加,统计与概率内容有明显的减少。增加的内容主要包括:“知道用算盘可以表示多位数”;“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小”;“认识小括号,能进行简单的整数四则混合运算(两步)”。调整的内容主要包括:估算的要求改为“能结合具体情境,选择适当的单位进行简单估算,体会估算在生活中的作用”;“能口算一位数乘除两位数”从第二学段移到第一学段”;“结合实例认识面积,体会并认识面积单位厘米、分米、米,能进行简单的单位换算”等。,课程内容变化,第二学段 统计与概率等内容适当降低难度。删除了中数、中位数内容和“能设计统计活动,检验某些预测;初步体会数据可能产生误导”。还有一些在表述方式和具体要求上做了一些调整。删除“了解两点确定一条直线和两条相交直线确定一个点”。这一内容对于小学生来说较为抽象,与生活经验的联系不是很紧密,要求学生了解意义不大,而“了解两点确定一条直线”放到第三学段作为进行演绎证明的基本事实之一。,课程内容变化,第二学段,增加的内容主要包括:“在具体情境中,了解常见的数量关系:总价=单价数量,路程=速度时间,并能解决简单的实际问题”;“结合简单的实际情境,了解等量关系,并能用字母表示”;“了解圆的周长与直径的比为定值”,强调学生在探索周长与直径比的过程中认识圆周率。,课程内容变化,第三学段,删除的内容有:对“大数”的认识与应用“能对含有较大数字的信息作出合理的解释与推断”(标准P31);对有效数字的要求“了解有效数字的概念”(标准P32);对一元一次不等式组的要求“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(标准P33);,课程内容变化,第三学段,删除的内容有:关于等腰梯形的相关要求(标准P39、P43);探索并了解圆与圆的位置关系(标准P39);关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(标准P40);关于镜面对称的要求(标准P41);极差、频数折线图等内容。,课程内容变化,增加的内容有:知道a的含义(这里 表示有理数);最简二次根式和最简分式的概念;能进行简单的整式乘法运算中增加了一次式与二次式相乘;能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题);会利用待定系数法确定一次函数的解析表达式;会比较线段的大小,理解线段的和、差,以及线段中点的意义;,课程内容变化,增加的内容有:了解平行于同一条直线的两条直线平行;会按照边长的关系和角的大小对三角形进行分类;探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;了解并证明圆内接四边形的对角互补;探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等;了解正多边形的概念及正多边形与圆的关系;尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。,课程内容变化,增加的选学内容有:以标注“*”的方式,具体如下:*能解简单的三元一次方程组;*知道给定不共线三点的坐标可以确定一个二次函数;*了解平行线性质定理的证明;*了解相似三角形判定定理的证明。,三、整体把握数学大学,分析类数学课程:研究函数以及与函数有关的问题的课程。数学分析,复变函数,实变函数,常微分方程,偏微分方程,数值计算,泛函分析,与这些课程有联系的拓展类课程:三角级数,调和分析,函数逼近论等等。,三、整体把握数学大学,代数类数学课程:研究运算以及与运算有关的课程。高等代数(线性代数、多项式理论),抽象代数,群伦,有限群及其应用,环论,域论,与这些课程有联系的拓展类课程:交换代数,非交换代数,半论,等等。,三、整体把握数学大学,几何类数学课程:研究图形以及与图形有关的课程。解析几何,射影几何(高等几何),微分几何,点集拓扑,代数拓扑,微分拓扑,微分流形,许多相关课程:代数几何,旋论,形论,等,三、整体把握数学大学,统计、概率类数学课程:统计,概率,许多相关课程:随机微分方程,等等,三、整体把握数学大学,应用类数学课程 运筹学线性规划、整数规划、非线性规划 优化课程 离散数学课程图论、学科应用课程生物数学、经济、金融类数学类课程 计算类课程 理论物理类数学课程 图像识别类数学课程 等等 算法与计算机课程,三、整体把握数学高中,从整体到局部高中数学内容主要脉络 运 算 函 数 几 何 统计概率 应 用 算 法,整体认识学科课程 高中初中小学 学年学期 学期章节,三、整体把握数学义务教育,四基:基本知识基本技能能基本思想基本活动经验,三、整体把握数学义务教育,内容结构:数与代数空间与图形统计与概率综合与实践,数与代数,数、字母与运算 运算对象认识 运算背景认识 运算法则 运算应用 精确计算与近似计算,数与代数,符号、关系与模型 量的认识 从算术到代数:模型 常量模型:方程与不等式 变量模型:函数模型 简单数学建模:模型分类、识别、确定,图形与几何,图形分类 空间图形 平面图形 直线图形、曲线图形,图形与几何,基本几何图形与基本关系:基本图形 长方体、直角坐标系 圆 等腰三角形?基本关系 图形组成要素的等、不等量关系 图形间全等关系 图形间相似关系 图形间对称关系 图形间投影关系,图形与几何,研究图形的基本方法 综合推理 运动与变换 坐标系与代数方法 度量与积分,统计与概率,统计 数据分析全过程 从数据中提取信息 统计实际应用 概率 随机现象基本特征与识别 古典概型初步,综合与实践,综合:综合数学讨论某些数学问题 综合数学讨论某些实际问题 体会与积累:数学实践活动全过程 积累数学活动经验,在新课程深入发展中,祝愿参加培训的教师为数学教育做出贡献!谢 谢!,

    注意事项

    本文(标准的变化与初中数学(王尚志).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开