欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第章参数估计与假设检验.ppt

    • 资源ID:4975320       资源大小:2.04MB        全文页数:137页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第章参数估计与假设检验.ppt

    第 5 章 参数估计与假设检验(5.1 5.5)统计推断是统计学的重要内容。它大致可以分为两类:估计问题与假设检验问题。且每类问题又可以分为参数估计与假设检验和非参数估计与假设检验。本章将介绍参数估计与参数假设检验的基本知识。一方面,在一些实际问题中,研究对象的总体分布类型往往可以从理论或实际经验中得到,而未知的只是分布中的参数。例如,由中心极限定理和实际经验知道:表示人体身高的随机变量 X 近似地服从正态分布 N(,2),其中参数,2 未知;表示纺织厂细纱机上的断头次数的随机变量 Y 近似地服从参数为 的泊松分布 P(),其中参数 未知;,另一方面,在有些情况下,人们所关心的并不是总体的分布,而是总体的某些数字特征(一般可以表为总体参数的函数,如:若总体 X e(),则 EX=1/)。这些问题都要求人们通过对所抽取的简单随机样本进行科学的分析,从而推断出总体的未知参数或数字特征来。这类问题统称为参数估计问题。参数估计问题又分为点估计与区间估计两类。直观地讲,点估计是要用样本的某一函数值做为待估参数的估计值;区间估计则是要将待估参数确定在某一范围之内。,5.1 点估计概述 一、什么叫点估计 设(X1,X2,Xn)是来自总体 X 的样本,(x1,x2,xn)是相应的样本值。是总体分布的待估参数,表示 的取值范围,称为参数空间。注:尽管参数 是未知的,但是它的参数空间 却是事先知道的。如正态总体 X N(,2)的参数 R,(0,+).,为估计参数,需要先构造一个统计量 h(X1,X2,Xn),然后再利用该统计量的实现值 h(x1,x2,xn)来估计参数 的真值,作为 的近似值,即 h(x1,x2,xn)。称统计量 h(X1,X2,Xn)为参数 的估计量,记作;该统计量的实现值 h(x1,x2,xn)为参数 的估计值,记作。在不会引起误会的场合,估计量与估计值统称为点估计,简称为估计,并简记为。且有。由于 的估计值 是数轴上的一个点,用 的估计值 作为 的真值的近似值,就相当于用一个点来估计,故得名“点估计”。,如果总体分布中有多个待估参数 1,2,r,(1,2,r),则一般需要构造不同的统计量,i=1,2,r,分别估计各个 i,且称 为第 i 个参数 i 的估计量,其相应的估计 值 为第 i 个参数 i 的估计值,i=1,2,r.如果待估参数是总体未知参数 的实值函数 g()(如:总体 X e()时,待估参数 EX=1/就是总体未知参数 的实值函数,此时有 g()=1/),则称用来估计实值函数 g()的统计量 为该实值函数 g()的估计量,统计量的相应的实现值为该实值函数 g()的估计值。且有 g()。,例 5.1(P.150 例 5.1)设某种型号的电子元件的寿命 X(以小时计),(x 0)。为未知参数,0。现得样本值为168,130,169,143,174,198,108,212,252,试估计未知参数。解 未知参数 的一个估计量,就是利用样本构造的一个函数。方法一 总体 X 服从参数为 的指数分布:X e(),EX=(),即未知参数 就是总体 X 的数学期望(均值)。,因此一个自然的想法就是,用样本均值 来估计未知参数(即总体的均值),得到未知参数 的一个估计量为,其中。对于给定的样本值,计算出未知参数 的一个估计值为。即 172.7。方法二 未知参数 的估计量也可以取为,则相应的估计值为。即 168。,方法三 记 X(1)=min X1,X2,X9,X(9)=max X1,X2,X9。将未知参数 的估计量取为,则相应的估计值为。即 180.由此可见,同一个未知参数,其估计量可以是多个。对于一个未知参数,原则上可以随意地去构造其估计量。因此,需要制定出衡量各种估计量好坏的标准,对估计量进行评价。注:由于作为估计量的统计量,是样本的函数,因而它是一个随机变量,具有不确定性。因此,在评价估计量时,不能仅凭一次估计的效果来衡量估计量的好坏,即不能用估计量的一次实现值(估计值)来衡量其好坏。要对估计量进行综合评价。最常用的评价估计量好坏的标准有:无偏性、有效性和相合性。,二、评价估计量的标准 1、无偏性 待估参数 的一个好的估计量 在多次使用中,其估计值应该在待估参数 的真值的两侧对称分布,即 的平均值应该与 的真值基本一致,即。如果估计量的实现值较多地偏向待估参数的真值的左(右)边,则说明估计值通常要小(大)于参数的真值,用这样的估计量去估计参数,通常会低估(高估)参数的真值。据此得到了评价估计量的“无偏性”标准。定义 5.1(P.146)设 为参数 的估计量,若,则称 是 的无偏估计量,否则称 是 的有偏估计量。若,则称 是 的渐进无偏估计量。,例 5.2(P.150 例 5.2*)设(X1,X2,Xn)是取自总体 X 的容量为 n 的样本。试验证样本方差 是总体方差 2 的无偏估计量,而统计量(未修正的样本方差)是总体方差 2 的有偏估计量。证 总体方差 DX=2 存在,总体均值也存在,记为,即 EX=。又(X1,X2,Xn)是取自总体 X 的一个样本,EXi=EX=,DXi=DX=2,i=1,2,n。且 X1,X2,Xn 相互独立。,于是,样本均值 满足:(即样本均值X 是总体均值 的无偏估计:EX=EX=);(即)。,而样本方,故 样本方差 是总体方差 2 的无偏估计量。,又 统计量 是总体方差 2 的有偏估计量(但它是总体方差 2 的渐进无偏估计量)。用统计量 B2 估计总体方差 2 时,平均说来会低估 2。可见,样本方差 S 2 比未修正的样本方差 B2 具有更良好的统计性质。,注:当估计量 是待估参数 的无偏估计量时,其函数 不一定仍是 g()的无偏估计量(取决于函数 g()是否为线性函数)。例如,设总体 X N(,2)(0),则样本均值X 是总体均值 的无偏估计量,但函数X 2 却不是 2 的无偏估计量。事实上,。即X 2 不是 2 的无偏估计量。一个待估参数 有时可以有若干个无偏估计量。,例如,在例 5.1 中,总体 X e(),EX=,DX=2.未知参数(0)的估计量,其中,以及 都是参数 的无偏估计量。但是,。从而有。这说明,用 去估计未知参数 时,估计值在 的真值周围较集中地对称分布,摆动的幅度比较小;而用 去估计未知参数 时,估计值在 的真值周围较分散地对称分布,摆动的幅度比较大。这也就是说,估计未知参数 时,一般比 更接近 的真值。因此,一个好的估计量不仅应该是无偏估计量,而且应该有尽可能小的方差。由此得到评价估计两好坏的第二个标准有效性。,2、有效性 定义 5.2(P.152)设 与 是参数 的两个无偏估计量,若,则称估计量 较 有效。在参数 的所有无偏估计量中,若 的方差最小,则称估计量 是参数 的最有效(最优、最佳)的估计量。注:只有当估计量 与 都是参数 的无偏估计量时,才讨论 与 的有效性;并非所有未知参数都具有最有效的估计量。,例 5.5 设总体 X 的期望 和方差 2 都存在,(X1,X2)是容量为 2 的样本,说明统计量 哪个是总体期望 的最有效的估计量。解 依题意 EX1=EX2=EX=,DX1=DX2=DX=2,且 X1,X2 相互独立。,1 和 2 是总体期望 的无偏估计量。在总体期望 的无偏估计量 1 和 2 中,2 是 1、2、3 中对总体期望 的最有效的估计量。,注:尽管 3 的方差 最小,但由于 3 不是总体期望 的无偏估计量,因此 3 也不是总体期望 的最有效的估计量。3、相合性(一致性)无偏性和有效性都是小样本准则,即性质成立与否与样本容量 n 无关。如果某种准则只要求当样本容量 n 时,估计量具有某种优良性质(如渐进无偏性),则称这种准则为大样本准则。相合性(一致性)是重要的大样本准则之一,它反映了估计量的一种大样本性质。,定义 5.3(P.153)设 为未知参数 的估计量,若 依概率收敛于,即对任意 0,有 或,则称 为 的(弱)相合估计量。此时也称估计量 具有相合性(一致性).定义 5.3 表明,“相合性”就是当样本容量 n 无限增大时,估计量 与未知参数 的真值任意接近的概率趋于 1。,例 5.6 根据伯努利大数定律(P.107 定理 3.8):“,则对任意 0,有”可见,在 n 重伯努利试验中,事件 A 发生的频率 是其发生的概率 p 的相合估计量.根据辛钦大数定律(P.108 定理 3.10):“,则对任意 0,有”可见,样本均值X 是总体期望值 的相合估计量。用不同的准则去衡量同一个估计量,会得出不同的结论,因此,要根据实际情况的具体需要选择适当的估计量。,作业 P154,1,5.2 参数的极大似然估计与矩估计 一、极大似然估计 极大似然估计法最早是由高斯(C.F.Gauss)提出来的,后来由费歇(R.A.Fisher)证明了这种方法的一些性质,并给出了“极大似然估计法”这一名称。1、极大似然估计法的基本思想(P.150)极大似然估计法的思想很简单:在已经得到试验结果的情况下,应该寻找使这个结果出现的可能性最大的那个 作为未知参数 的估计。,设(X1,X2,Xn)为来自总体 X 的容量为 n 的样本,总体 X 的分布类型已知,但参数 未知,。(1)总体 X 是离散型随机变量,其概率分布的形式为 P(X=x)=p(x;),则样本(X1,X2,Xn)的概率分布为,。在 固定时,此式表示样本(X1,X2,Xn)取值(x1,x2,xn)的概率;反之,当样本值(即试验结果)(x1,x2,xn)给定时,上式则可以看作是未知参数 的函数,记作 L(),并称,为似然函数。,对于不同的 值,似然函数 L()有不同的函数值。而似然函数似 L()的值的大小,又表示样本(X1,X2,Xn)取值(x1,x2,xn)的概率,即意味着样本值(x1,x2,xn)出现的可能性的大小。既然经过试验已经得到了样本值(x1,x2,xn),那么就有理由认为此样本值(x1,x2,xn)出现的可能性是最大的。也就是说,此时似然函数的取值应该是最大的。因此,选择使似然函数 L()达到最大值的那个*作为未知参数 的估计,即选择*,使。,(2)总体 X 是连续型随机变量,其密度函数为 f(x;),则样本(X1,X2,Xn)的概率密度函数为,。在 固定时,它表示样本(X1,X2,Xn)在(x1,x2,xn)处的密度,其值的大小与样本(X1,X2,Xn)落在点(x1,x2,xn)附近的概率值的大小成正比;反之,当样本值(即试验结果)(x1,x2,xn)给定时,它是未知参数 的函数,仍然记作 L(),并称,为似然函数。同样,应该选择使似然函数 L()达到最大值的那个*作为未知参数 的估计,即选择*,使。,这种“选择使似然函数 L()达到最大值的那个*作为未知参数 的估计”的求点估计的方法,叫做极大似然估计法。注:由于*通常随样本值(x1,x2,xn)的不同而变化,因此*通常是样本值(x1,x2,xn)的函数,记作*=*(x1,x2,xn)。,定义 5.4(P.154)若对任意给定的样本值(x1,x2,xn),存在*=*(x1,x2,xn),使,则称*(x1,x2,xn)为参数 的极大似然估计值,称相应的统计量*(X1,X2,Xn)为参数 的极大似然估计量。它们统称为参数 的极大似然估计,可简记作 M L E(Maximum Likelihood Estimate)。其中似然函数,。,如果总体中含有多个未知参数 1,2,r,那么似然函数就是多元函数 L(1,2,r)。若对任意给定的样本值(x1,x2,xn),存在 i*=i*(x1,x2,xn),i=1,2,r,使,则称 i*(x1,x2,xn)为参数 i 的极大似然估计(M L E),i=1,2,r。极大似然估计的不变性(P.152):如果 是参数 的极大似然估计,u=g()是 的函数,且存在单值反函数=g 1(u),则 就是 g()的极大似然估计(此性质可以推广到多个参数的场合)。,例如,若 是未知参数 的极大似然估计,u1=3,u2=2,则 是 u1=3 的极大似然估计;但是,就不一定是 u2=2 的极大似然估计(因为函数 u2=2 不存在 的单值的反函数)。下面给出极大似然估计法的定义:定义 以极大似然估计(值或量)作为未知参数 的估计,以 的函数 作为未知参数 的同一函数 g()的估计的方法,称为极大似然估计法。其中 g()存在单值反函数。,求极大似然估计(i=1,2,r)的主要步骤 写出似然函数,(1,2,r);如果似然函数 L(1,2,r)是某个未知参数 i 的单调函数,则似然函数的最大值点 i*一定在参数 i 的参数空间的边界上达到,此时可以直接求出 i*;如果似然函数 L(1,2,r)不是未知参数 i 的单调函数,i=1,2,r,求对数似然函数 ln L(1,2,r);,令,i=1,2,r,得到似然方程组,从中解出所有驻点;从求出的所有驻点中,找出使似然函数 L(1,2,r)达到最大值的点 i*,i=1,2,r;注:当似然函数 L(1,2,r)关于某个 i(1 i r)的驻点唯一时,则认为该驻点就是似然函数的最大值点 i*(1 i r),而不必再做进一步的验证了。给出各参数的极大似然估计 M L E:极大似然估计值,i=1,2,r;极大似然估计量,i=1,2,r。,例5.9 设(X1,X2,Xn)为总体 X 的一组样本,总体 X 密度函数为:(参数 未知,且 0),(1)试求未知参数 的极大似然估计量;(2)检验其无偏性。解(1)似然函数,0,两边取对数,得,由,得唯一驻点,参数 的极大似然估计量为。,(2)(X1,X2,Xn)为总体 X 的一组样本,E Xi=E X,E Xi=E X,i=1,2,n。又 是 的无偏估计量。,例5.10 设总体 X 在区间 0,(0)上服从均匀分布,求未知参数 的极大似然估计(量/值)。解 依题意,总体 X 的密度函数为 设(X1,X2,Xn)是取自总体 X 的容量为 n 的样本,其样本值为(x1,x2,xn),则似然函数为 似然函数 L()关于未知参数 单调减少,且其最大值在 的范围内达到。当 时,似然函数 L()达到最大值。于是,参数 的极大似然估计量为,极大似然估计值为。,例5.11 设总体 X 的密度函数为(0),从总体 X中抽取一组样本(X1,X2,Xn),样本值为(x1,x2,xn),求总体期望 的极大似然估计量。解(1)先求总体参数 的极大似然估计量:似然函数,(0 0。两边取对数,得,由,得唯一驻点。参数 的极大似然估计量为。,(2)再求总体期望 的极大似然估计量:,此函数存在 的单值反函数,总体期望 的极大似然估计量为.极大似然估计法有许多优良的性质,因此它是一种很有用的估计方法。但是,在求极大似然估计时,必须知道总体的分布,而且似然方程组的解有时也不容易求,因而使它在应用上受到了一定的限制。,二、矩估计 1、矩估计法的基本思想 除极大似然估计法外,矩估计法也是求点估计常用的方法.矩估计法的基本思想是(P.157):用相应的样本矩去估计总体矩;用相应的样本矩的函数去估计总体矩的相同函数。例如,设总体 X e(),则。于是,总体均值的矩估计量为,总体未知参数 的矩估计量为.,总体 k(k 0)阶原点矩为:k=EXk(1=EX),总体 k(k 0)阶中心矩为:k=E(X EX)k(1=0,2=DX)。样本(X1,X2,Xn)则 样本 k(k 0)阶原点矩为:(A1=X),样本 k(k 0)阶中心矩为:(B2=S02),其中。,利用矩估计法,就是用样本的 k 阶原点矩去估计总体的 k 阶原点矩;用样本的 k 阶中心矩去估计总体的 k 阶中心矩,即,k=1,2,;,k=2,3,。这种求点估计的方法称为矩估计法。用矩估计法确定的估计量称为矩估计量,相应的估计值称为矩估计值。矩估计量与矩估计值统称为矩估计,简记为 M E(Moment Estimate)。在实际应用中,大部分情况下是求总体期望 EX 和方差 DX 的矩估计量:;,其中 为样本均值。,矩估计法是一种古老的估计方法。其特点是不要求已知总体分布的类型,只要未知参数可以表示成总体矩的函数,就能够求出未知参数的矩估计。矩估计法的思路自然,且不一定需要知道总体分布的类型,因而有着广泛的应用。但是,当样本容量 n 较大时,所得到的矩估计值的精度一般不如极大似然估计值的精度高;当总体分布的类型已知时,采用矩估计法不能够充分利用总体分布所提供的信息,损失了有用的信息。另外,矩估计有时还不具有唯一性,例如,设总体X P(),则 EX=DX=。于是,未知参数 的矩估计量为,或,其中 为样本均值。,2、矩估计的求法 按照矩估计法的基本思想,求未知参数的矩估计的一般步骤为(P.158):(1)从总体矩入手,将待估参数 表示为总体矩的函数,即=g(1,2,l;1,2,s);(2)用样本矩 Ak,Bk(k=1,2,)分别替换函数g()中的总体矩 k,k.(3)得到参数 的矩估计(ME),即,其中 是未知参数,(X1,X2,Xn)是来自总体 X 的样本,求参数 的矩估计量。解 求矩估计量 找出参数 与总体矩(数学期望、方差等)之间的关系 E X=0 2+1 2(1)+2 2+3(1 2)=3 4。求总体期望 E X 的矩估计量以及参数 的矩估计量,例5.14(续例 5.8)设总体 X 的概率分布为,求总体期望 E X 的矩估计量以及参数 的矩估计量 又 总体期望 E X 的矩估计量是,其中 未知参数 的矩估计量是,其中。,例5.15 设总体 X 具有密度函数(其中 为未知参数,且 1),取自总体的样本为(X1,X2,Xn),求 的矩估计量。,解 首先找出参数 与总体矩(数学期望、方差等)之间的关系,再求总体期望 E X 的矩估计量,最终得到 的矩估计量 又,.,例5.18*设总体 X 服从 分布,其密度函数为,其中参数,未知,(X1,X2,Xn)为取自总体 X 的样本,求,的矩估计量。注:此题含有两个未知参数 和,需要求 EX 和 EX2(或 DX);求解过程中需要用到 函数的有关知识:;且有(+1)=()。,解 由,解得,且有关系式=EX。,;有(+1)=()。,又 总体期望 EX 和方差 DX 的矩估计量分别为 和,其中。参数 和 的矩估计量分别为 和,其中。,作业 P159:1(1),(4).,5.3 置信区间 点估计就是用数轴上的一个点去估计总体的未知参数。可见,利用点估计是不能够直接提供估计误差的。,在有些情况下,人们并不满足于这种只找出未知参数 的某一个近似值的做法,人们还关心这种近似的精度有多高,即 需要指出用估计值 去估计未知参数 的误差范围有多大?同时还需要指出这个误差范围能以多大的概率包含未知参数?这些问题的解决需要引入另一类估计问题区间估计。在区间估计的理论中,被广泛接受的一种观点是置信区间,它是由奈曼(Neyman)于 1934 年提出的。,一、置信区间的概念 定义 5.5(P.155)设 为总体分布的未知参数,,(X1,X2,Xn)为来自总体 X 的样本。对给定的数 1(0 1),如果存在两个统计量(X1,X2,Xn)和(X1,X2,Xn),使得 P()=1,则称区间 I=(,)为参数 的置信度为 1 的置信区间,(X1,X2,Xn)和(X1,X2,Xn)分别称为参数 的置信度为 1 的置信下限和置信上限,1 称为置信度(置信系数、置信概率),是参数估计不准的概率。,注:置信区间的两个端点(X1,X2,Xn)和(X1,X2,Xn)不依赖于参数 的随机变量,因而置信区间 I=(,)是一个随机区间,由样本值来确定。这个随机区间是置信区间的一个实现,它能够套住参数 的概率就是置信度 1,套不住参数 的概率为。置信度1 通常取为 0.90,0.95 和 0.99。用频率来解释就是:如果重复试验了 100 次,得到样本(X1,X2,Xn)的 100 个实现值,相应地可以得到 100 个置信区间值(,),则在这 100 个区间中,大约有 100(1)个区间包含有未知参数,不包含未知参数 的区间大约有 100 个。如果令=0.05,在上述 100 个区间中,大约有 95 个区间包含有参数,大约有 5 个区间不包含有参数。,当得到一组样本值(x1,x2,xn)以后,置信区间 I=((x1,x2,xn),(x1,x2,xn))就是一个确定的普通区间了,其具体位置也就确定下来了(实现)。在这个确定的区间中,可能包含参数,也可能不包含参数。未知参数 落入置信区间的可能性是置信度 1。与 的差 称为置信区间的长度,它的大小反映了区间估计的估计误差(精度):区间越长,该区间包含参数 的可能性就越大(置信度就越高),估计的误差也就越大(估计精度降低);区间越短,该区间包含参数 的可能性就越小(置信度就越低),估计误差也就越小(估计精度有所提高)。,人们总是希望置信区间(,)的长度越短越好(以缩小估计的误差,提高估计的精度),同时也希望置信区间(,)中包含参数 的置信度 1 越高越好(以提高估计的可靠性.二者是相互矛盾的。当样本容量 n 一定时,置信度 1 越高,置信区间(,)的长度也将随之增大。一般的做法是:先取定置信度 1 的值,再来选择相应的最短的置信区间。如果既要满足对区间长度的要求,又要满足对置信度的要求,则需要通过加大样本容量 n 来实现。而样本容量 n 的增大,通常又会导致费用的增加,而且在有些情况下是做不到的。(可见,增加样本容量,可提高统计推断的可靠性。),二、寻找置信区间的方法 先看例5.12.寻找未知参数 的置信区间的一般步骤为:(P.157)(1)选取未知参数 的一个较优的点估计;围绕 寻找一个含有未知参数 的枢轴量V=V(X1,X2,Xn;),且要求枢轴量 V 的分布是已知的;,(2)对于给定的置信度 1,分别确定分位数 1 和 2,使得 P(1 V(X1,X2,Xn;)2)=1(*)注:一般可选取满足 P(V(X1,X2,Xn;)1)=P(V(X1,X2,Xn;)2)=/2的 1 和 2(1=v1/2,2=v/2),即(2*)对于给定的置信度 1,分别确定分布水平 1/2 和/2 的上侧分位数 v1/2 和 v/2,使得 P(v1/2 V(X1,X2,Xn;)v/2)=1(*)即分位数 v1/2 和 v/2 应分别满足,即分位数 v1/2 和 v/2 应分别满足 P(V(X1,X2,Xn;)v1/2)=1/2(或 FV(v1/2)=/2);和 P(V(X1,X2,Xn;)v/2)=/2(或 FV(v/2)=1/2)。(3)给出置信区间 将(*)式变形(反解)为 P(X1,X2,Xn)(X1,X2,Xn)=1,(4)得到未知参数 的置信度为 1 的置信区间 I=(,)。,第一步中“确定枢轴量 V=V(X1,X2,Xn;)的分布”是十分困难的,分为小样本和大样本两种情况:1、小样本 小样本的情况比较复杂,枢轴量的分布不易确定,一般没有固定的规律可寻。通过下面的例子体会其一般做法。,例 5.13 设总体 X 的密度为,未知参数 0,(X1,X2,Xn)是取自总体 X 的样本。(1)试证;(2)试求 的 1 置信区间;解(1)分析:将 2 变量(2(2n))分解。,故只需证明总体 X 的 倍(即 X)服从 2(2)。,解(1)记,设 Y 的分布函数与密度函数分别为 G(y)与 g(y),则由 0,得 于是,即 Y e(1/2)=2(2)。(X1,X2,Xn)是取自总体 X 的样本,i=1,2,n。且 X1,X2,Xn 相互独立。由独立 2 变量的可加性,得。又,.,(2)样本均值X 是未知参数 的极大似然估计量。从X 出发,考虑枢轴量,由(1)知;对给定的 1,确定分位数 和,使.(*)即 和 满足 和;,将(*)式变形为,得到参数 的 1 置信区间为。,注:在求置信区间的计算过程中,一般保留两位小数即可。在小样本的情形下,根据所讨论问题的不同,枢轴量的选取也不同,从而得到的置信上限、置信下限的计算公式也会有所变化。,2、大样本情形的渐进置信区间(样本容量 n 30,最好 n 50)(P.166)当总体的分布未知,或者虽然总体的分布已知,但是枢轴量的分布难以确定时,有时也可以利用极限分布来构造总体期望 EX 的渐近置信区间。注:此时要求样本容量 n 足够大;利用此方法只能求出总体期望 EX 以及与 EX 有关的参数的近似置信区间,如:若总体 X e(),则 EX=1/。于是,由总体期望 EX 的近似置信区间(,),可以推知总体参数 的近似置信区间为(1/,1/)。,总体 X:EX=和 DX=2,(X1,X2,Xn)是来自总体 X 的容量为 n 的样本。当样本容量 n 充分大时,;,其中X 和 S2 分别为样本均值和样本方差。由此可以得到大样本的情形下,求总体 X 的数学期望EX=的置信度约为 1 的置信区间的基本步骤:(1)取枢轴量(当总体方差 2 已知时);或:(当总体方差 2 未知时),且 当样本容量 n 充分大时,Un 和 Tn 都近似服从标准正态分布 N(0,1)(定理 4.4)。,(2)对于给定的置信度 1,查标准正态分布表,确定分布水平 的双侧分位数 u/2,使。从而有 当总体方差 2 已知时;即。或:当总体方差 2 未知时;即。,(3)总体 X 的数学期望 EX=的置信度约为 1 的置信区间为,简记为(当总体方差 2 已知时);或:,简记为(当总体方差 2 未知时)。置信区间的长度为(当总体方差 2 已知时);或:(当总体方差 2 未知时)。,例 5.17已知总体 X b(1,p)时,=EX=p,2=DX=p(1 p)。若样本容量 n 充分大,则总体期望 p 满足,经不等式变形得 P(ap2+bp+c 0)1,其中a=n+(u/2)2,b=2nX(u/2)2,c=n(X)2。即 P(p1 p p2)1,其中,。于是,区间(p1,p2)就是总体期望 p 的置信度约为 1 的置信区间。,在实际应用中,为使计算方便,常常采用下面的简化了的置信区间:由于当样本容量 n 充分大时,,且用样本均值X 代替分母中的总体均值 EX=p 以后,仍然成立(证明略)。所以有,即。于是,总体期望 p 的置信度约为 1 的置信区间为。例5.18,例5.20 某铁路局随机抽取了 100 天的预订票记录,统计未到旅客的人数。整理后的结果如下:求预订票未到旅客的平均人数 的 95%的置信区间。解 记 r.v.X 一天中预订票而未到的旅客人数 这是总体 X 的分布未知,大样本的情况下,求总体期望 的双侧置信区间的问题。(1)枢轴量(当 n 充分大时),(2)对于=1 95%=0.05,查标准正态分布表,得u 0.025=1.96,,(3)依题意,n=100,置信下限 为,置信上限为,预订票未到旅客的平均人数 的置信度约为 95%的置信区间为(1.27,1.73)。,三、正态总体参数的置信区间(参见 P.195表 5.1)P.163 设总体 X N(,2),0,(X1,X2,Xn)是来自总体 X 的样本。1、总体均值 的置信区间(1)方差 2 已知的情形 当总体方差 2 已知时,求总体期望 的置信度为 1 的置信区间的步骤如下:选择含有未知参数 的枢轴量,并确定其分布:U N(0,1)(定理 4.2);,根据给定的置信度 1,查标准正态分布表,确定分布水平 的双侧分位数 u/2,使,从而有,即;求置信区间 正态总体 X 的数学期望 的置信度为 1 的置信下限为,置信上限为,从而,正态总体 X 的数学期望 的置信度为 1 的置信区间为,简记为,从而,正态总体 X 的数学期望 的置信度为 1 的置信区间为,简记为。置信区间的长度为。注:置信区间的长度。这说明,既要置信度 1 足够大(即 u/2 足够大),又要区间长度 L 充分小,只有通过加大样本容量来实现。,按照上述方法所求到的置信区间,是所有满足置信度要求的置信区间中长度最短的一个(P.163)。事实上,根据置信区间的定义(定义 5.5),在给定置信度 1 时,对任意的 1 0,2 0,1+2=,所有满足 的区间 都是 的置信度为 1 的置信区间。这些置信区间的长度,即当 1=2=/2 时,置信区间的长度最短。,方差已知时均值的区间估计,例5.14,例5.21 设正态总体 N(,2)的方差 2 已知,置信度为1。为使总体均值 的置信区间的长度不大于 L,样本容量至少为多少?解 设样本容量为 n。依题意,置信区间的长度,解得。于是,样本容量至少应为不小于 的最小正整数(只入不舍)。,例5.22 某车间生产滚珠,其直径 X 是随机变量,总体 X N(,0.06),从某天的产品中随机抽取六件,测得其直径(单位:毫米):14.6 15.1 14.9 14.8 15.2 15.1(1)求 的置信度为 95%的置信区间;(2)如果要求置信区间的长度不大于 0.1,求样本容量至少应取为多少?解(1)这是已知正态总体方差 2=0.06 时,求总体期望 的置信区间的问题。枢轴量;1=95%,=0.05。查标准正态分布表得 u0.025=1.96;,依题意,2=0.06,n=6,于是,置信下限为,置信上限为,的 95%的置信区间为(14.754,15.146),即有 95%的把握使总体期望 属于区间(14.754,15.146)。(置信区间的长度 L=0.392)(2)依题意,2=0.06,u/2=u0.025=1.96,为使置信区间的长度,则样本容量 n 应满足,即样本容量至少应取为 93(只入不舍)。,(2)方差 2 未知的情形 当总体方差 2 未知时,求总体期望 的置信度为 1 的置信区间的步骤如下(表 5.1):选择含有未知参数 的枢轴量,并确定其分布 由于总体方差 2 未知,故用样本方差 S 2 代替,得到枢轴量,其中 是样本标准差,且有T t(n 1)(定理 4.2);对于给定的置信度 1,根据显著水平 与自由度 n 1,查 t 分布表,确定分布水平 的双侧分位数 t/2(n 1),使,,从而有,即;求置信区间 正态总体 X 的数学期望 的置信度为 1 的置信下限为,置信上限为,从而,正态总体 X 的数学期望 的置信度为 1 的置信区间为,简记为 置信区间的长度为。,例5.24 假设总体方差 2 未知。某车间生产滚珠,其直径 X 是服从正态分布的随机变量,从某天的产品中随机抽取六件,测得其直径(单位:毫米):14.6 15.1 14.9 14.8 15.2 15.1,求总体期望 的置信度为 95%的置信区间。解 这是正态总体方差 2 未知的情况下,求总体期望 的置信区间的问题。依题意,设直径 X N(,2)。(1)枢轴量;(2)1=95%,=0.05。查自由度 n 1=5 的 t 分布表,得 t 0.025(5)=2.5706;,(3)依题意,n=6,于是,置信下限为,置信上限为,的 95%的置信区间为(14.713,15.187),即有 95%的把握使总体期望 属于区间(14.713,15.187)。(置信区间的长度 L=0.474 0.392),比较例 5.22 和例 5.24 的结果可知:总体方差 2 未知时得到的置信区间的长度,要比总体方差 2 已知时得到的置信区间的长度长,说明总体方差 2 未知时的估计误差有所增加,估计精度有所降低。这也就是说,如果得到的有关总体的信息较少,那么估计的精度就较低。,2、总体方差 2 的置信区间 类似地,求总体方差 2 的置信度为 1 的置信区间,分为总体数学期望 已知或未知两种情形来考虑,所使用的原理和方法与求总体期望 的置信区间的原理和方法基本相同,只是所选取的枢轴量有所不同。,(1)均值已知时方差的区间估计,(2)均值未知时方差的区间估计,在实际应用中,总体期望 与总体方差 2 往往都是未知的,这里主要讨论在 未知时,2 的置信区间。,求出的正态总体 X 的方差 2 的置信度为 1 的置信区间为。置信区间的长度为,另外,正态总体 X 的标准差 的置信度为 1 的置信区间为。,解,由题意得,查表得,算得,所求置信区间为,(0.038,0.506),例5.25 某种内服药有使病人血压增高的副作用,已知血压的增高服从正态分布。现测得 10 名服用此药的病人的血压,记录血压增高的数据如下:18 27 23 15 18 15 18 20 17 8 求药物导致血压增高的标准差的 90%的置信区间。解 这是正态总体期望 未知时,求总体标准差 的置信区间的问题。依题意,设血压的增高 X N(,2)。(1)枢轴量;(2)置信度 1=90%,显著水平=0.10,查自由度 n 1=9 的 2 分布表,得 2 0.95(9)=3.325,2 0.05(9)=16.919;,(3)依题意,n=10,x=17.9,s2=25.4,置信下限,;置信上限为,;从而,药物导致血压增高的标准差的 90%的置信区间为(3.67,8.29)(药物导致血压增高的方差的 90%的置信区间为(13.5,68.8)。教材将单正态总体参数的置信区间的求法归纳于表 5.1 中。,作业P168:2,3.,5.4 假设检验概述 参数估计是根据所抽取到的来自总体的样本,求出总体未知参数的一个估计值(点估计),或者求出总体未知参数的某一个取值范围(区间估计)。假设检验是根据所抽取到的来自总体的样本,对人们已经做出的关于该总体的某个方面(如:总体分布函数、数字特征、参数值等)的论断(常用 H0 表示)的正确性进行检验。这些论断通常称为统计假设,用字母 H 表示。,统计假设是人们对待验证问题的论断,形式多样.统计检验是用于验证统计假设对错的一种方法。,一、假设检验问题的提法(统计假设 H)完整的统计假设一般包括两部分:1、原假设(零假设),用 H0 表示.原假设 H0 是有关总体的未知分布的假设。2、备择假设(对立假设),用 H1 表示。备择假设 H1 是与原假设 H0 对立的假设。当根据抽样调查的资料有充分理由否定原假设H0 时,接受与其对立的假设H1。原假设与备择假设之中只有一个是真的,需要人们通过假设检验的方法加以鉴别。假设检验是针对原假设 H0 进行的,其目的在于判断原假设 H0 的真伪。,例 5.30 某工厂生产一批产品共 20000 件,经检验合格才能出厂。按照国家标准,次品率 p 不得超过 3%。由于这种产品的检查是破坏性的,不能对每一件产品都进行检查。现从这批产品中随机地抽取 50 件,发现其中有 2 件次品。问这批产品是否符合国家标准?解 从直观上分析,抽样次品率为,不符合国家标准,应该认为这批产品不能出厂。但是,如何根据所抽取的样本,用科学的方法来判断这批产品是否真的不符合国家标准,也就是说判断这批产品的次品率 p 是否真的大于 3%?这就是一个假设检验问题。统计假设 H0:p 3%,H1:p 3%。如果记总体,则 X b(1,p)。因而这是一个非正态总体的参数假设检验问题。,例 5.31 设某种化工产品在生产过程中的温度 X 服从正态分布 N(,2)。已知最理想的生产温度是=200。在某次生产过程中,一小时内测量了 5 次温度,所得数据为 194,190,202,200,205(),问是否可以认为该生产过程保持在最理想的温度?解 这是一个正态总体的参数假设检验问题。统计假设 H0:=200,H1:200。例 5.32 根据一个随机变量 X 的 样本值,判断该随机变量是否服从正态分布?解 这是一个非参数假设检验问题 统计假设 H0:总体 X 服从正态分布,H1:总体 X 不服从正态分布。,例 5.33 机床的加工精度可以用其加工的产品的直径的方差来度量。欲比较甲、乙两台机床的加工精度,从这两台机床加工的产品中分别抽取 n1 和 n2 个样品,测量这些产品的直径得到样本值:甲:;乙:。问甲、乙两个机床的加工精度是否有差别?解 一般认为产品的直径是服从正态分布的。如果设甲机床加工的产品的直径 X N(甲,甲2),乙机床加工的产品的直径 Y N(乙,乙2),则 统计假设 H0:甲2=乙2,H1:甲2 乙2。这是双正态总体的参数假设

    注意事项

    本文(第章参数估计与假设检验.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开