工程制图精品课件—23直线、平面与平面的相对位置:平行问题、相交问题.ppt
第三节 直线、平面与平面的相对位置,相对位置包括平行、相交和垂直。,一、平行问题,直线与平面平行,平面与平面平行,直线与平面平行,a,c,b,m,a,b,c,m,例1:过M点作直线MN平行于平面ABC。,有无数解,正平线,例2:过M点作直线MN平行于V面和平面ABC.,c,b,a,m,a,b,c,m,唯一解,例题3 试判断直线AB是否平行于定平面,结论:直线AB不平行于定平面,两平面平行,若一平面上的两相交直线对应平行于另一平面上的两相交直线,则这两平面相互平行。,若两投影面垂直面相互平行,则它们具有积聚性的那组投影必相互平行。,例题1 试判断两平面是否平行,结论:两平面平行,例题2 已知定平面由平行两直线AB和CD给定。试过点K作一平面平行于已知平面。,二、相交问题,直线与平面相交,直线与平面相交,其交点是直线与平面的共有点。,要讨论的问题:,求直线与平面的交点。,判别两者之间的相互遮挡关系,即判别可 见性。,我们只讨论直线与平面中至少有一个处于特殊位置的情况。,直线与特殊位置平面相交,由于特殊位置平面的某些投影有积聚性,交点可直接求出。,判断直线的可见性,特殊位置线面相交,根据平面的积聚性投影,能直接判别直线的可见性。,a,b,c,m,n,c,n,b,a,m,平面为特殊位置,例:求直线MN与平面ABC的交点K并判别可见性。,空间及投影分析,平面ABC是一铅垂面,其水平投影积聚成一条直线,该直线与mn的交点即为K点的水平投影。,求交点,判别可见性,由水平投影可知,KN段在平面前,故正面投影上kn为可见。,还可通过重影点判别可见性。,1(2),作 图,k,m(n),b,m,n,c,b,a,a,c,直线为特殊位置,空间及投影分析,直线MN为铅垂线,其水平投影积聚成一个点,故交点K的水平投影也积聚在该点上。,求交点,判别可见性,点位于平面上,在前;点位于MN上,在后。故k 2为不可见。,1(2),作图,用面上取点法,两平面相交,两平面相交其交线为直线,交线是两平面的共有线,同时交线上的点都是两平面的共有点。,要讨论的问题:,求两平面的交线,方法:,确定两平面的两个共有点。,确定一个共有点及交线的方向。,只讨论两平面中至少有一个处于特殊位置的情况。,判别两平面之间的相互遮挡关系,即:判别可见性。,可通过正面投影直观地进行判别。,a,b,c,d,e,f,c,f,d,b,e,a,m(n),空间及投影分析,平面ABC与DEF都为正垂面,它们的正面投影都积聚成直线。交线必为一条正垂线,只要求得交线上的一个点便可作出交线的投影。,求交线,判别可见性,作 图,从正面投影上可看出,在交线左侧,平面ABC在上,其水平投影可见。,例:求两平面的交线MN并判别可见性。,一般位置平面与特殊位置平面相交,求两平面交线的问题可以看作是求两个共有点的问题,由于特殊位置平面的某些投影有积聚性,交线可直接求出。,b,c,f,h,a,e,a,b,c,e,f,h,1(2),空间及投影分析,平面EFH是一水平面,它的正面投影有积聚性。ab与ef的交点m、b c与f h的交点n即为两个共有点的正面投影,故mn即MN的正面投影。,求交线,判别可见性,点在FH上,点在BC上,点在上,点在下,故fh可见,n2不可见。,作 图,