欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    专题15从全等到相似.docx

    • 资源ID:4933158       资源大小:196.25KB        全文页数:13页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题15从全等到相似.docx

    九年级数学培优专题15从全等到相似阅读与思考相似三角形的知识应用广泛,可以证明角的相等、线段成比例等问题.通过寻找(或构造)相似三 角形获得比例线段或等角,用以论证或计算的方法,我们称为相似三角形法,这是几何学中应用最广泛 的方法之一.全等三角形是相似三角形相似比等于1的特殊情况,相等是它的主旋律,从全等到相似的过程,不 仅是认识形式上的变化,而且在思维方法上也是一个飞跃,在相似形的问题中出现的线段间的关系比全 等形中的等量形式更为复杂,不仅有比例式,还有等积式、平方式,甚至是线段乘积的和差、线段比的 和差.证明这类问题,常常要通过命题的转换或中间量的过渡.熟悉下面这些“A”型、"X”型,子母型等相似三角形.例题与求解【例1】如图,口ABCD中,直线PS分别交AB,CD的延长线于P,S,交BC,AC,AD于Q,E,R图中相似三角形的对数(不含全等三角形)共有对.(武汉市竞赛试题)解题思路:从寻找最基本的相似三角形入手,注意相似三角形的传递性【例2】 如图,在直角梯形ABCD中,AB=7, AD=2, BC=3.如果边AB上的点P使得以P, A, D为顶点的三角形和以P, B, C为顶点的三角形相似,那么这样的点P有( )A,1个B.2个C.3个D.4个解题思路:通过代数化,将P点的个数的讨论转化为方程解的个数的讨论.要使两个三角形相似,并没有具体的对应关系,所以结论具有不确定性,应注意分类讨论A,DPB C【例3】如图,在ABC中,AB=AC,AD是中线,P是AD上一点,过C作CFAB,延长BP交AC于&交CF于F.求证:BP2 = PE - PF .(吉林省中考试题)解题思路:由于BP,PE,PF在一条直线上,所以必须通过等线段的代换促使问题的转化证明比例式或等积式是几何问题中的常见题型,解决它的常用方法是:找相似:三点定形法;作平行:根据要证明的式子,找到一个分点,过此点作平行线,能写出要证式子中的一个比或与其 相关的比;变原式:包括等量代换、等积代换和等比代换.AC 2 AH【例4】已知ABC中,BCAC,CH是AB边上的高,且满足=.试探讨/A与NB的BC 2 BH关系,并加以证明.(武汉市竞赛试题)解题思路:由题设易想到直角三角形中的基本图形、基本结论,可猜想出匕A与ZB的关系.解题 的关键是综合运用勾股定理、比例线段的性质,推导判定两个三角形相似的条件CD如图,直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,由此得出的等积式在计算 与证明中应用极为广泛,其特点是:一线段是两个三角形的公共边;另两条线段在同一直线上.构造逆命题是提出问题的一个常用方法,例4是在直角三角形被斜边上的高分成的相似三角形得出 结论基础上提出的一个逆命题.你能提出新的问题吗?并加以证明.【例5】如图1,P为ABC内一点,连接PA,PB,PC.在PAB,APBC和APAC中,如果存在 一个三角形与&相似,那么就称P为AABC的自相似点.(1)如图2,已知RtAABC中,ZACB=90°,ZABC > ZA,CD是AB上的中线,过点B作BE± CD,垂足为E,试说明E是人8。的自相似点;(2)在AABC 中,ZA <ZB <ZC . 如图3,利用尺规作出人8。的自相似点P (写出作法并保留作图痕迹); 若AABC的内心(ZA,ZB,ZC角平分线的交点)P是该三角形的自相似点,求该三角形三个内角的度数.(南京市中考试题)解题思路:本例设问形式多样,从概念的判断说理到作图求解,由浅入深,而认识并深刻理解“自 相似点”的概念,是解题的关键.【例6】如图,在矩形ABCD中,AB=12cm, BC=6cm.点P沿AB边从点A开始向B以2cm/s的速 度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P, Q同时出发,用,(秒)表示 移动时间(0 < t < 6),那么:(1)当t为何值时,OAP为等腰三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q,A,P为顶点的三角形与AABC相似?(河北省中考试题)解题思路:对于(3),借助三角形相似的判定方法,由于未指明对应关系,探求质点运动的时间应 注意分类讨论.能力训练A级1.如图,已知 /1 = /2,ZB = ZD,AB = DE = 5,BC = 4,那么 AD=(第1题)(第2题)(第3题)2. 如图,在ABC中,AB = 9,AC = 6,点M在AB上且AM = 3,点N在AC上 如果连接MN, 使得AMN与原三角形相似,则AN=.143. 如图,在直角梯形ABCD中,ADBC,AB±BC,AD = BC,CD = BC,E,F为两腰上的33AE DF中点.下面的四个结论:CE = 2BE :ADEsAEDC;S性沥=S:=无.其中结论 正确的有.(填序号即可)(宜昌市中考试题)4,在四边形ABCD中,E, F, G , H分别是AB , BC, CD , DA上的一点,且竺=竺=DG = AH =阅读下段材料,然后回答后面问题.口BE FC GC HDA:、一 H _ _.D如图,连接BD,V 竺=AH , BF = DG ,.EHBD,.,.FGBD, FGEH.E)了'、'*GBE HD FC GC(1) 连接AC,则EF与GH是否一定平行,答:'、«(2) 当k值为 时,四边形EFGH为平行四边形.B F(3)在(2)的情形下,对角线AC与BD只须满足条件时,EFGH为矩形;(4)在(2)的情形下,对角线AC与BD只须满足条件时,EFGH为矩形.(黄冈市中考试题)5.如图,在ABC中,AD±BC于点D,下列条件:ZB + ZDAC = 90。:ZB = ADAC :CD AC _ =:AB2 = BD - BC,其中一定能判定AABC是直角三角形的共有()AD ABA.3个B.2个C.1个D.0个6.如图,口 ABCD中,E是BC上一点,BE: EC = 2:3 , AE交BD于点F,则BF:FD等于()A.2:5B.3:5C.2:3D.5: 7(重庆市中考试题)7. 将三角形纸片(ABC)按如图所示的方式折叠,使点B落在边AC上,即为点B',折痕为EF.已知AB = AC = 3, BC = 4 ,若以点B, F, C为顶点的三角形与AABC相似,那么BF的长度为()A.2B.C.2或D.不确定77(山东省中考试题)8. 如图,在ABC 中,AB = 8 , BC = 7 , CA = 6,延长BC 至 P,使得 PABAPCA,则 PC 等 于( )A.7B.8C.9D.10(重庆市竞赛试题)9,已知:正方形的边长为1.(1)如图1,可以算出一个正方形的对角线长寸2,求两个正方形并排拼成的矩形的对角线长,进 而猜想出n个正方形并排拼成的矩形的对角线长;图1(2)根据图 2,求证:BCEsBED;(3 )由图3,在下列所给的三个结论中,通过合情推理选出一个正确的结论加以证明:ZBEC + ZBDE = 45。, ZBEC + /BED = 45。: ZBEC + ZDFE = 45。.A B C D A B C DEEF图2图3(三明市中考试题)10.如图,在ABC 中,/ACB = 2/ABC.求证:AB2 = AC2 + AC - BC .A一CBC(黄冈市竞赛试题)11. (1)如图1,等边ABC中,D为AB边上的动点,以CD为一边向上作等边EDC,连接AE, 求证:AEBC;(2)如图2,将(1)中的等边ABC的形状改为以BC为底边的等腰三角形,所作EDC改成相 似于ABC,请问:是否仍有AEBC ?证明你的结论.(苏州市中考试题)图1图212.如图,分别以锐角ABC的边AB, BCCA为斜边向外作等腰RtADAB,等腰RtAEBC,等腰 RtAC.求证:(1) AE=DF; (2) AE±DF.(全国初中数学竞赛试题)1.如图,在梯形ABCD中,ABCD, AB < CD,一直线交BA延长线于& 交DC延长线于J,DC交 AD 于 F, BD 于 G, AC 于 H, BC 于 I.已知 EF = FG = GH = HI = IJ,贝= AB.(“祖冲之杯”邀请赛试题)(第1题)(第2题)(第3题)2. 如图,直角梯形ABCD中,ADBC,ZB = 90。,AD = 2,BC = 4,点P在高AB上滑动.若DAPspbC,AP = 3时,PB =(重庆市竞赛试题)3. 如图,四边形ABCD为正方形,A,E,F,G在同一条直线上,且AE = 5cm,EF = 3cm,那么FG =.(香港初中数学竞赛试题)a4. 如图,RtABC 中,ZC = 90。,AC = CD = BD,DE LAB 于 E.设 AE = a,BE =如则=()bA.3: 2B.4:3C.5: 4D.6:5(重庆市竞赛试题)(第4题)(第5题)5.如图,在ABC中,D是边AC上一点,下面四种情况中,AABDsAACB不一定成立的情况是()A. AD - BC = AB - BDB. AB2 = AD - ACC. ZABD = ZACBD. AB - BC = AC - BD(全国初中数学联赛试题)6.已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比为4,那么两底的比为()1 1A.B.2 411C.D.816(江苏省竞赛试题)7.如图,。是四边形ABCD对角线的交点,已知/BAD + ZBCA = 180。,AB = 5 , AC = 4 , AD = 3 ,(“祖冲之杯”邀请赛试题)O=6,求 BC.(第8题)(第7题)8.如图, ABC 中,角 A: B : C = 4: 2:1 , AD, BE 分别平分ZBAC, /ABC.求证:AB2 = AD -BE .(沈阳市竞赛试题)9, 在ABC中,/A,/B,/C所对的边分别用a, b, c表示.A图图B(1)如图 1,在ABC 中,/A = 2/B,且/A = 60。,求证:a2 = b(b + c);(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本 题第1问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角ABC,如图2,其中/A = 2/B, 关系式a2 = b(b + c)是否仍然成立?并证明你的结论.10, 在 AABC 中,ZA = 90。,点 D 在线段 BC 上,ZEDB = - AC,BELDE 于 E,DE 与 AB 相交 2于点F.(1)当AB=AC时(如图1), ZEBF =;探究线段BE与FD的数量关系,并加以证明;(2)(大连市中考试题)当AB = kAC时(如图2),求竺的值(用含k的式子表示).FD沿直线MN将11.如图,AB是等腰直角三角形的斜边,若点M在边AC上,点N在边BC上MCN翻折,使点C落在AB上,设其落点为点P.(1)(2)PA CM当点P是边AB的中点时,求证: =;PB CNPA CMP = 以是否仍然成立?请证明你的结论.PB CN当点P不是边AB的中点时,(北京市宣武区中考试题)12.如图,在四边形ABCD中,E,点,PF交AD于点M,PE交BCF分别是边AB,CD的中点.P为对角线AC延长线上的任意一于点N,EF交MN于点K.求证:K是线段MN的中点.(江西省竞赛试题)

    注意事项

    本文(专题15从全等到相似.docx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开