欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    勾股定理教学设计案例.doc

    • 资源ID:4926195       资源大小:156.52KB        全文页数:4页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    勾股定理教学设计案例.doc

    勾股定理教学设计教学目标知识技能了解勾股定理的背景;体验勾股定里的探索过程。数学思考在勾股定理的探索过程中,发展合理推理能力,体会数形结合的思想。解决问题通过拼图活动,体验数学思维的严谨性,发展形象思维。情感态度通过对勾股定理历史的了解,感受数学文化,激发学习热情。重点探索和证明勾股定理。难点用拼图的方法证明勾股定理。教材分析这节课是九年制义务教育课程标准实验教科书(人教版),八年级第十八章“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景动手操作、归纳验证问题解决课堂小结、布置作业”四个方面。学法分析新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人教学流程安排活动流程图活动内容和目的活动一 欣赏图片 了解历史活动二 探索勾股定理活动三 证明勾股定理活动四 小结、布置作业通过对赵爽弦图的了解,激发学生对勾股定理的探索兴趣。观察、分析方格图,得出直角三角形的性质勾股定理,发展学生分析问题的能力。通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神。回顾、反思、交流。布置课后作业,巩固、发展、提高教学过程设计问题与情景师生行为设计意图【活动1】展示2002年在北京早开的第24届国际数学家大会的会徽图案。(1)你见过这个图案吗?(2)你听说过:“勾股定理”吗?教师出示图片。学生观察图片发表见解。教师做补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”。在本次活动中,教师应重点关注:(1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣(2)学生对勾股定理的了解程度。从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情。同时为探索勾股定理提供背景资料。【活动2】毕达哥拉斯是古代希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。(1)现在也请你观察一下,你有什么发现?(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?(3)你有新的结论吗?教师展示图片并提出问题。学生观察图片并分组交流。教师引导学生总结:等腰直角三角形的两条直角边平方和等于斜边的平方。在独立探究的基础上,学生分组交流。教师参与小组活动,指导、倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在本次活动中,教师应重点关注:(1)给学生留出充分的时间思考和交流,鼓励学生大胆说出自己的看法;(2)学生能否准确挖掘出图形中的隐含条件,计算各个正方形的面积;(3)学生能否有不同种方法得到大正方形的面积(先补全再分割、旋转),引导学生重点学习赵爽弦图的分割法;(4)学生能否将三个正方形面积关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来;(5)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人意见,对不同的观点进行质疑,从中获益。问题是思维的起点,通过问题激发学生好奇、探究和主动学习的欲望。渗透从一般到特殊的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比、迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。鼓励学生勇于面对数学活动中的困难,尝试从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验。让学生在轻松的氛围中积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益。【活动3】是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明。到目前为止,对这个命题的证明方法法已有几百种之多。下面,我们就来看一看我国古代数学家赵爽是怎样证明这个命题的。(1)以直角三角形ABC的两条直角边a,b为边作两个正方形。你能通过剪、拼把它拼成弦图的样子吗?(2)面积分别怎样表示?它们有怎样的关系呢?教师提出问题,学生在独立思考的基础上以小组为单位,动手拼接。教师深入小组参与活动、指导学生完成拼图活动。学生展示分割、拼接的过程。在本次活动中,教师应重点关注:(1)学生对拼图活动是否感兴趣;(2)学生能否进行合理的分割。对不同层次的学生有针对性的给与分析、帮助(3)学生能否用语言准确的表达自己的观点 通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。 通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想。 通过探究活动,调动学生的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。【活动4】 小结:勾股定理从边的角度刻画了直角三角形的又一特征,人类对勾股定理的研究已有近300年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”“百牛定理”“驴桥定理”等等。 布置作业: 收集有关勾股定理的证明方法,下节课展示、交流。 学生谈体会。 教师进行补充、总结,为下节课做好铺垫。 在此活动中教师应着重关注: (1)不同层次的学生对知识的理解程度; (2)学生是否能从不同的方面谈感受; (3)倾听他人的意见,体会合作学习的必要性。课下根据自己的情况选择完成。 通过小节为学生创造交流空间,调动学生的积极性,既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂的整体感受。在轻松愉快的气氛中体会收获的喜悦。 给学生留有继续学习的空间和兴趣。板书设计: 18.1勾股定理 如果直角三角形的两个直角边长分别为a,b,斜边长为c, 那么a²+b²=c²教学反思:勾股定理在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。同时,勾股定理的发现、验证和应用蕴涵着丰富的文化价值。因此,勾股定理是初中几何教学中的重要内容。我对本节课的教学过程是这样设计的: 1、欣赏图片,激发兴趣通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出"赵爽弦图",让学生了解我国古代辉煌的数学成就,引入课题。2、分析探究,得出猜想 通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。同时在网格中求斜正方形面积的时候,利用割的方法把正方形转化为四个直角三角形和中间一个小正方形(即赵爽图),用补的方法构成了一个大的正方形减去四个直角三角形,这样做的目的也是为下面的证明做铺垫。3、拼图证明,得出定理先让学生利用学具自己剪拼图形,后利用图形面积关系进行证明。不论拼图还是证明难度都比较大,组织学生开展小组合作学习时。需要老师巡回辅导,给予学生必要的帮助。4、本节课存在的不足: 本节课在勾股定理的证明上,虽然是在教师的指导下用"赵爽弦图"验证勾股定理,但学生之间交往互动不足。学生主动参与度不够,在拼图环节,尽管前面也试着做了些铺垫,但大部分小组只拼出了赵爽图,而另一个图却只有个别小组拼出,这说明课堂设计上没有充分考虑学生的参与度,设计的问题对学生的引导作用不大。

    注意事项

    本文(勾股定理教学设计案例.doc)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开