欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    核酸的结构与功能.ppt

    • 资源ID:4923115       资源大小:1.16MB        全文页数:65页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    核酸的结构与功能.ppt

    第二章 核酸结构与功能,核酸的概念和重要性,核酸的组成成分,DNA的结构,DNA和基因组及基因组学,RNA的结构和功能,核酸的性质,核酸的序列测定,核酸的生物学功能和实践意义,一、核酸的概念和重要性,1869年Miescher从细胞核中分离出核素(nuclein)。,1889年Altman制备了核酸(nucleic acid)。,193040年,Kossel&Levene等确定核酸的的组分:,“四核苷酸假说”:核酸由四种核苷酸组成的单体构成的,缺乏结构方面的多样性。,20世纪40年代末,Avery 的“肺炎链球菌转化”实验证明DNA是有机体的遗传物质:,DNA,温育,有荚膜,致病,除少数病毒(RNA病毒)以RNA作为遗传物质外,多数有机体的遗传物质是DNA。,不同有机体遗传物质(信息分子)的结构差别,使得其所含蛋白质(表现分子)的种类和数量有所差别,有机体表现出不同的形态结构和代谢类型。,RNA的主要作用是从DNA转录遗传信息,并指导蛋白质的合成。,二、核酸的组成成分,核酸 nucleic acid,核苷酸 nucleotide,核苷 nucleoside,磷酸 phosphate,嘌呤碱 purine base 或 嘧啶碱 pyrimidine base,(碱基 base),核糖 ribose 或 脱氧核糖 deoxyribose,(戊糖 amyl sugar),(一)核糖和脱氧核糖,-D-2-核糖,-D-2-脱氧核糖,核糖+H+,糠醛,甲基间苯二酚,FeCl3,绿色产物,脱氧核糖+H+,-羟基-酮戊醛,二苯胺,蓝色产物,RNA和DNA定性、定量测定,(二)嘌呤碱和嘧啶碱,1,2,3,4,5,6,7,8,9,嘌呤,腺嘌呤 adenine,(A),鸟嘌呤 guanine,(G),嘧啶,1,2,3,4,5,6,H,胞嘧啶 Cytosine,(C),尿嘧啶 uracil,(U),H,H,胸腺嘧啶 thymine,(T),H,H,烯醇式,(三)核苷,腺苷,|,尿苷,OH,假尿苷(),(四)核苷酸,P,-O,胸苷-5-磷酸,O,|,各种核苷三磷酸和脱氧核苷三磷酸是体内合成RNA和DNA合成的直接原料。,在体内能量代谢中的作用:,ATP能量“货币”,UTP参加糖的互相转化与合成,CTP参加磷脂的合成,GTP参加蛋白质和嘌呤的合成,第二信使cAMP、cGMP,H,3,5,1,P,P,P,OH,A,T,G,pGpTpAOH,pG-T-A,pGTA,H,H,H,H,H,H,H,H,H,H,H,三、DNA的结构,(一)DNA的一级结构,因为DNA的脱氧核苷酸只在它们所携带的碱基上有区别,所以脱氧核苷酸的序列常被认为是碱基序列(base sequence)。通常碱基序列由DNA链的53方向写。DNA中有4种类型的核苷酸,有n个核苷酸组成的DNA链中可能有的不同序列总数为4n。,(二)DNA的双螺旋结构,1953年,Watson 和Crick 提出。,1.双螺旋结构的主要依据,(1)Wilkins和Franklin发现不同来源的DNA纤维具有相似的X射线衍射图谱。,(2)Chargaff发现DNA中A与T、C与G的数目相等。后Pauling 和Corey发现A与T生成2个氢键、C与G生成3个氢键。,(3)电位滴定证明,嘌呤与嘧啶的可解离基团由氢键连接。,2.双螺旋结构模型要点,(1)两条多核苷酸链反向平行。,(2)碱基内侧,A与T、G与C配对,分别形成3和2个氢键。,(3)双螺旋每转一周有10个bp,螺距3.4nm,直径2nm。,3.双螺旋结构的稳定因素,(1)氢键(太弱);(2)碱基堆积力(base stacking force,由芳香族碱基电子间的相互作用引起的,能形成疏水核心,是稳定DNA最重要的因素;(3)离子键(减少双链间的静电斥力)。,4.DNA双螺旋的构象类型,B-DNA:92%相对湿度,接近细胞内的DNA构象,与Watson 和Crick提出的模型相似。,A-DNA:75%相对湿度,与溶液中DNA-RNA杂交分子的构象相似,推测转录时发生BA。其碱基平面倾斜19,螺距与每一转碱基对数目都有变化。,Z-DNA:主链呈锯齿型左向盘绕,直径约1.84nm,螺距4.56nm,每一转含12个bp,只有小沟。B-DNA与Z-DNA的相互转换可能和基因的调控有关。,(三)DNA的三级结构,双螺旋DNA进一步扭曲盘绕则形成其三级结构,超螺旋是DNA三级结构的主要形式。线形分子、双链环状(dcDNA)超螺旋。,染色体包装,染色体包装的结构模型,多级螺旋模型压缩倍数 7 6 40 5(8400)DNA 核小体 螺线管 超螺线管 染色单体 2nm 10nm 30(10)nm 400nm 210m 一级包装 二级包装 三级包装 四级包装,四、DNA与基因组及基因组学,DNA,Transcription,RNA(mRNA、tRNA、rRNA),Translation,Protein,基因,基因是DNA片段的核苷酸序列,DNA分子中最小的功能单位。基因组(genome)是指一种生物体的全部基因或染色体。,结构基因,调节基因,基因组,(一)DNA与基因,(二)原核生物基因组的特点,1.DNA大部分为结构基因,每个基因出现频率低。,2.功能相关基因串联在一起,并转录在同一mRNA中(多顺反子)。,3.有基因重叠现象。,(三)真核生物基因组的特点,1.重复序列,单拷贝序列,:在整个DNA中只出现一次或少数几次,主要为编码蛋白质的结构基因。,中度重复序列,:在DNA中可重复几十次到几千次。,高度重复序列,:可重复几百万次,2.有断裂基因,mRNA,1 872bp,内含子(intron):基因中不为多肽编码,不在mRNA中出现。,外显子(exons):为多肽编码的基因片段。,:由于基因中内含子的存在。,例外:组蛋白基因(histongene)和干扰素基因(interferon gene)没有内含子。,基因组学研究的内容与意义,基因组学(英文genomics),台湾译作基因体学,研究生物基因组和如何利用基因的一门学问。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。,基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。,基因组学的主要工具和方法包括:生物信息学,遗传分析,基因表达测量和基因功能鉴定基因组学出现于1980年代,1990年代随着几个物种基因组计划的启动,基因组学取得长足发展。相关领域是遗传学,其研究基因以及在遗传中的功能。1980年,噬菌体-X174;(5,368 碱基对)完全测序,成为第一个测定的基因组。,1995年,嗜血流感菌(Haemophilus influenzae,1.8Mb)测序完成,是第一个测定的自由生活物种。从这时起,基因组测序工作迅速展开。2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。基因组学是研究生物基因组的组成,组内各基因的精确结构、相互关系及表达调控的科学。,五、RNA的结构与功能,RNA分子是含短的不完全的螺旋区的多核苷酸链。,(一)tRNA,tRNA约占RNA总量的15%,主要作用是转运氨基酸用于合成蛋白质。,tRNA分子量为4S,1965年Holley 测定AlatRNA一级结构,提出三叶草二级结构模型。,主要特征:1.四臂四环;2.氨基酸臂3端有CCAOH的共有结构;3.D环上有二氢尿嘧啶(D);4.反密码环上的反密码子与mRNA相互作用;5.可变环上的核苷酸数目可以变动;6.TC环含有T和;7.含有修饰碱基和不变核苷酸。,(二)rRNA,占细胞RNA总量的80%,与蛋白质(40%)共同组成核糖体。,(三)mRNA与hnRNA,mRNA约占细胞RNA总量的35%,是蛋白质合成的模板。,真核生物mRNA的前体在核内合成,包括整个基因的内含子和外显子的转录产物,形成分子大小极不均匀的hnRNA。,(四)snRNA和asRNA,snRNA主要存于细胞核中,占细胞RNA总量的0.11%,与蛋白质以RNP(核糖核酸蛋白)的形式存在,在hnRNA和rRNA的加工、细胞分裂和分化、协助细胞内物质运输、构成染色质等方面有重要作用。,asRNA可通过互补序列与特定的mRNA结合,抑制mRNA的翻译,还可抑制DNA的复制和转录。,(五)RNA的其它功能,1981年,Cech发现RNA的催化活性,提出核酶(ribozyme)。,大部分核酶参加RNA的加工和成熟,也有催化C-N键的合成。23SrRNA具肽酰转移酶活性。,RNA在DNA复制、转录、翻译中均有一定的调控作用,与某些物质的运输与定位有关。,六、核酸的性质,(一)一般理化性质,1.为两性电解质,通常表现为酸性。,2.DNA为白色纤维状固体,RNA为白色粉末,不溶于有机溶剂。,3.DNA溶液的粘度极高,而RNA溶液要小得多。,4.RNA能在室温条件下被稀碱水解而DNA对碱稳定。,5.利用核糖和脱氧核糖不同的显色反应鉴定DNA与RNA。,(二)核酸的紫外吸收性质,核酸的碱基具有共扼双键,因而有紫外吸收性质,吸收峰在260nm(蛋白质的紫外吸收峰在280nm)。,核酸的光吸收值比各核苷酸光吸收值的和少3040%,当核酸变性或降解时光吸收值显著增加(增色效应),但核酸复性后,光吸收值又回复到原有水平(减色效应)。,(三)核酸结构的稳定性,1.碱基对间的氢键;2.碱基堆积力;3.环境中的正离子。,(四)核酸的的变性,:双螺旋区氢键断裂,空间结构破坏,形成单链无规线团状,只涉及次级键的破坏。,DNA变性是个突变过程,类似结晶的熔解。将紫外吸收的增加量达到最大增量一半时的温度称熔解温度(melting temperature,Tm)。,Tm,Tm,影响Tm的因素:,(1)G-C的相对含量(G+C)%=(Tm 69.3)2.44,(2)介质离子强度低,Tm低。,(3)高pH下碱基广泛去质子而丧失形成氢键的能力。,(4)变性剂如甲酰胺、尿素、甲醛等破坏氢键,妨碍碱基堆积,使Tm下降。,(五)核酸的复性(退火),:变性核酸的互补链在适当条件下重新缔合成双螺旋的过程。,影响复性速度的因素:,(1)单链片段浓度,(2)单链片段的大小,(3)片段内重复序列的多少,(4)溶液离子强度的大小,(5)溶液温度的高低(T 25),(六)分子杂交,:在退火条件下,不同来源的DNA互补区形成氢键,或DNA单链和RNA链的互补区形成DNA-RNA杂合双链的过程。,探针:用放射性同位素或荧光标记的DNA或RNA片段。,原位杂交技术:直接用探针与菌落或组织细胞中的核酸杂交,未改变核酸所在的位置。,点杂交:将核酸直接点在膜上,再与核酸杂交。,Southern印迹法:将电泳分离后的DNA片段从凝胶转移到硝酸纤维素膜上,再进行杂交。,Northern印迹法:将电泳分离后的RNA吸印到纤维素膜上再进行分子杂交。,七、核酸的序列测定,目前多采用Sanger的酶法和Gilbert的化学法,|,八、核酸的生物学功能和实践意义,核酸是基本遗传物质,在蛋白质的生物合成上又占有重要位置,因而在个体的生长、生殖、遗传、变异和转化等一系列生命现象中起决定性作用。,(一)核酸与遗传信息的传递,DNA是基本遗传物质 有了一定结构的DNA,才能产生一定结构的蛋白质,由一定结构的蛋白质才有一定形态和生理特征,所以根据DNA的特定遗传密码产生的蛋白质就代表特定生物的遗传性。在遗传过程中DNA的具体作用:(1)在细胞分裂时按照自己的结构精确复制传给后代;(2)作为模板将所贮遗传信息传给mRNA。,RNA在传递遗传信息上的作用 mRNA是蛋白质合成的模板;tRNA识别mRNA上的遗传密码,转运特定氨基酸到核糖体上合成肽链;rRNA是核糖体的主要成分,是翻译工作的场所。,(二)核酸与蛋白质的生物合成,DNA转录为mRNA是有选择的,tRNA和rRNA也是DNA的转录产物。,(三)核酸结构改变与生物变异,一切生物的变异和进化都可以说是由于DNA的结构改变而引起蛋白质改变的结果。,生物遗传的变异起源于DNA碱基配对的改变,有的由于DNA碱基的颠倒(如TA被颠倒为AT)或被调换(如GC被换为TA);有的由于在DNA复制过程中被遗漏了一对或多了一对核苷酸,或者在转译时发生了差误,如氨酰tRNA合成酶错将一个结构与正常氨基酸十分相似的物质交给tRNA。还有一些生物的遗传性状发生了突变。,(四)DNA与细菌转化,一种细菌的遗传性状因吸收了另一种细菌的DNA而发生改变的现象,称为细菌的转化。,(五)核酸与病变,遗传性疾病是由于遗传缺陷而产生的,也就是DNA结构改变的结果。镰刀型红细胞贫血和白化病(albinism)。,病毒对活细胞的侵染是寄主发生疾病,主要是由于核酸的的作用。流感、肝炎、带状疱疹、脊髓灰质炎、白血病、烟草斑纹病。,(六)遗传工程,遗传工程是用人工方法改组DNA,从而培育新型生物品种的技术。,实验室中将细菌作材料研究遗传工程过程可分为:(1)重组DNA分子(基因重组);(2)将重组DNA引入受体细胞(转化或转导)。,有利:(1)有可能培育出高产抗病、耐旱、耐寒、耐盐碱的优良性能的动植物新品种;(2)改良微生物品种使产生人工难以制得的生物活性物质如胰岛素、干扰素等;(3)解决某些疾病病因和控制这些疾病。,不利:引起某些疾病的广泛流行和使某些细菌失去对抗菌素的敏感性,或者使某些酶或激素失去应有的生物活性等。,(七)克隆与克隆化,由单一亲代细胞用无性繁殖产生的子代细胞称克隆,形成克隆的过程称克隆化。,提要,本章主要介绍核酸的化学本质、结构和功能。总的要求是:1.了解核酸的化学本质及DNA和RNA在组分、结构和功能上的差异。2.弄清嘌呤、嘧啶、核苷、核苷酸和核酸在分子结构上的关系。3.了解核酸的结构和它们的性质、功能的相互关系。认识核酸在生物科学上的重要性及其实践意义。,注意:(1)核苷酸是核酸的基本组成单位,应以腺苷酸和胞苷酸为代表,彻底弄清核苷酸的化学结构和化学性质。结合有机化学把嘌呤和嘧啶的基本结构搞清楚,同时把核酸中存在的A、T、U、C、G的结构记熟。(2)注意嘌呤、嘧啶同核糖在哪个部位连接成核苷,核苷如何同磷酸连接成核苷酸,核苷酸又如何连接成一级结构的核苷酸链。要特别注意核酸的二、三级结构中碱基的配对规律。(3)从分析比较核酸分子的组成和结构上的特点,进而联系它们的性质和生物功能。,主要特征:1.四臂四环;2.氨基酸臂3端有CCAOH的共有结构;3.D环上有二氢尿嘧啶(D);4.反密码环上的反密码子与mRNA相互作用;5.可变环上的核苷酸数目可以变动;6.TC环含有T和;7.含有修饰碱基和不变核苷酸。,模板,引物,GGC,GGCC,GGCCATC,C,ddCTP,GGCCA,GGCCATCGTTGA,ddATP,A,GGCCATCG,GGCCATCGTTG,G,ddGTP,GGCCAT,GGCCATCGT,GGCCATCGTT,T,ddTTP,核酸的种类、分布、功能,种类,脱氧核糖核酸(DNA):是主要的遗传物质。,核糖核酸(RNA),tRNA(15%),mRNA(3-5%),rRNA(80%),其它RNA:如反义RNA等,所有生物细胞都含有DNA和RNA这两类核酸,而病毒只含DNA或RNA。真核生物染色体DNA是线型双链DNA。原核生物的染色体DNA、质粒DNA和真核生物的细胞器DNA都是环状双链DNA。细胞RNA通常都是线型单链,但病毒RNA则有线型与环状、双链与单链之分。,分布,DNA,原核生物,真核生物,拟核,质粒,染色体(质),细胞器:如线粒体、叶绿体等,RNA:核内(snRNA、hnRNA)、胞质(scRNA)、细胞器,质粒DNA为cccDNA。类病毒为环状ssRNA。卫星病毒或卫星RNA是指没有辅助性病毒协助时,不能在宿主细胞内复制的病毒或RNA。,功能,DNA:是主要的遗传物质,遗传信息以密码形式编码在核酸分子上,表现为特定的核苷酸序列。,RNA,参与蛋白质合成,tRNA:转运、识别,rRNA:装配、催化,mRNA:信使、模板,多种细胞功能,RNA的5种功能,控制蛋白质合成,作用于RNA转录后加工与修饰,基因表达与细胞功能调节:如反义RNA、RNAi(RNA干扰),生物催化与细胞持家功能(细胞基本功能),遗传信息的加工与进化,生物体通过DNA复制将遗传信息由亲代传递给子代。通过RNA转录和蛋白质翻译使遗传信息在子代中得以表达。基因是指具有遗传效应的DNA片段或RNA,它能编码蛋白质或功能RNA。某些病毒的基因组是RNA。,核酸结构,核酸分子的组成 核酸的四级结构,基本内容,核 酸,核酸分子组成,核苷酸,磷酸,核苷,戊糖,碱基,A,G,T,C,U,核糖,脱氧核糖,碱基结构、稀有碱基、核苷三磷酸、环化核苷酸,磷酸基的位置 在RNA分子中,磷酸在2、3、5均可;在DNA分子中,磷酸在3、5(D-2-脱氧核糖)。核酸分子的形成 由多个核苷酸分子聚合而成,无分支结构。核苷酸分子之间以 3,5磷酸二酯键相连。磷酸二酯键的走向为3 5。DNA与RNA的四级结构与蛋白质四级结构比较。,DNA的四级结构,一级结构:由多个4种脱氧核苷酸分子通过3,5磷酸二酯键连接形成的直线型或环型多聚体。,二级结构:在碱基互补配对的基础上形成的DNA双螺旋结构。,三级结构:在二级结构上,DNA双螺旋结构通过折叠和扭曲所形成的特定构象。如超螺旋等。,四级结构:指DNA与蛋白质形成的复合物。如染色体(质)。,重要概念,碱基互补配对与Chargaff规则 DNA双螺旋结构 DNA双螺旋的几种构象 超螺旋 染色体(质)的结构,碱基互补配对 指碱基A、T配对,碱基G、C配对。它们之间分别通过2个氢键和3个氢键配对。即A=T G=C。Chargaff规则 在双链DNA分子中,碱基摩尔数存在下列关系:A=T G=C A+C=G+T A+G=T+C DNA双螺旋结构 1953年,Watson和Crick在前人工作的基础上提出DNA双螺旋结构模型。该模型的特征如下:两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,且两条链均为右手螺旋。碱基平面与纵轴垂直,糖环平面与纵轴平行;,嘌呤与嘧啶碱基位于双螺旋的内侧;双螺旋的平均直径为2nm,两个相邻碱基对之间的距离为0.34nm,即碱基堆积距离为0.34nm;沿中心轴每旋转一周有10个核苷酸,故每一转的高度为3.4nm,即螺距为3.4nm;两个核苷酸之间的夹角为36;两条核苷酸链依靠碱基之间形成的氢键而结合在一起,即A与T配对,C与G配对;碱基在一条链上的排列顺序不受限制,但一旦确定后,即可决定另一条互补链上的序列。该模型中的DNA结构称为B型构象,表示DNA钠盐在较高湿度下制得的纤维的结构,可能比较接近大部分DNA在细胞中的构象;DNA能以多种构象存在,如A、C、D、E、Z(比较特殊)。其中A和B型是DNA的两种基本构象;这些构象在一定条件下可以互变,但不涉及共价键的断裂;,超螺旋 当DNA分子在溶液中以一定的构象存在时,双螺旋处于能量最低的状态,此为松弛态;如果这种正常的DNA分子额外地多转几圈或少转几圈,就会使双螺旋中存在张力。当DNA分子的两端是固定的,或是环状分子,则这种额外的张力就不能释放掉,DNA分子就会发生扭曲,用以抵消张力。这种扭曲称为超螺旋,即双螺旋的螺旋。如B型构象的两条链均为右手螺旋,则其负超螺旋为左手螺旋。在生物体内,绝大多数的DNA是以超螺旋的形成存在的。,

    注意事项

    本文(核酸的结构与功能.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开