《关系数据库 》PPT课件.ppt
第二章 关系数据库,关系模型概述关系数据结构及形式化定义关系的完整性关系代数,2006年4月12日,2,关系模型概述,关系模型的组成关系数据结构关系操作集合关系完整性约束一、单一的数据结构-关系关系模型中实体及实体间的联系都用关系表示关系就是一张二维表。,2006年4月12日,3,关系操作,关系模型中常用的关系操作包括:选择、投影、连接、除、并、交、差等增加、删除、修改关系操作的特点集合操作方式即操作的对象和结果都是集合。一次一集合方式。非关系数据模型的数据操作方式为一次一记录的方式。,2006年4月12日,4,关系数据语言分类,早期的关系操作能力用代数方式表示,称为关系代数用逻辑方式表示,称为关系演算关系演算又可按谓词变元的基本对象是元组变量还是域变量分为元组关系演算域关系演算。这三种语言在表达能力上是完全等价的。另外还有一种介于关系代数和关系演算之间的语言SQL(Structurel Query Language)。SQL不仅具有丰富的查询功能,而且具有数据定义和数据控制功能,是集查询、DDL、DML和DCL于一体的关系数据语言。它充分体现了关系数据语言的特点和优点,是关系数据库的标准语言。,2006年4月12日,5,关系数据语言分类:,关系数据语言,关系代数语言,例如 ISBL,关系演算语言,元组关系演算语言 例如APLHA,QUEL,具有关系代数和关系演算双重特点的语言例如 SQL,域关系演算语言 例如QBE,2006年4月12日,6,三、关系的三类完整性约束,关系模型允许定义三类完整性约束:实体完整性关系模型必须满足的完整性约束条件,由关系系统自动支持参照完整性关系模型必须满足的完整性约束条件,由关系系统自动支持用户定义的完整性。应用领域需要遵循的约束条件,体现了具体领域中的语义约束。,2006年4月12日,7,关系数据结构及形式化定义,域:定义2.1 域是一组具有相同数据类型的值的集合。如整数的集合、字符串的集合、全体学生的集合。笛卡儿积定义2.2:给定一组域D1,D2,Dn,这些域中可以有相同的。D1,D2,Dn的笛卡儿积为D1D2Dn=(d1,d2,dn)|diDi,i=1,n其中每一个元素(d1,d2,dn)叫做一个n元组(n-tuple),或简称元组。元组中的每一个值di叫做一个分量(component)。若Di(i=1,2,n)为有限集,其基数为mi(i=1,2,n),则D1D2Dn的基数M为:mi的积,即,2006年4月12日,8,笛卡儿积的运算过程例子,笛卡尔积可表示为一个二维表。表中的每行对应一个元组,表中的每列对应一个域。例如给出三个域:D1一导师集合SUPERVISOR一张清玫,刘逸D2一专业集合SPECIALITY一计算机专业,信息专业D3一研究生集合POSTGRADUATE一李勇,刘晨,王敏,则D1D2D3的笛卡尔积为:D1D2D3(张清政,计算机专业,李勇),(张清政,计算机专业,刘晨),(张清政,计算机专业,王敏),(张清政,信息专业,李勇),(张清政,信息专业,刘晨),(张清政,信息专业,王敏),(刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨),(刘逸,计算机专业,王敏),(刘逸,信息专业,李勇),(刘逸,信息专业,刘晨),(刘逸,信息专业,王敏),其中(张清玫,计算机专业,李勇)、(张清玫,计算机专业,刘晨)等都是元组。张清玫、计算机专业、李勇、刘晨等都是分量。该笛卡尔积的基数为2X2X312,也就是说,D1D2D3一共有2X2X312个元组。这12个元组可列成一张二维表(如表2.1)。,2006年4月12日,9,关系数据结构及形式化定义,关系定义2.3:D1D2Dn的子集叫做在域D1,D2,Dn上的关系,表示为:R(D1,D2,Dn)说明:D1D2Dn表示的是域上所有可能的组合,在现实生活中很多元组是无意义的数据,而一个关系肯定包含在D1D2Dn之中,因此在数学上把关系定义为D1D2Dn的子集。这里R表示关系的名字,n是关系的目和度。关系中的每个元素是关系中的元组,通常用t表示。当n1时,称该关系为单元关系。当n2时,称该关系为二元关系。关系是笛卡儿积的有限子集,关系 二维表、表的每行元组、表的每列域。由于域可以相同,为了加以区分,必须对每列起一个名字,称为属性。N目关系必有n个属性,2006年4月12日,10,关系数据结构及形式化定义,候选码若关系中的某一属性组的值能唯一地标识一个元组,则称该数据组为候选码。主码若一个关系有多个候选码,则选定其中一个为主码。主属性主码的诸属性称为主属性。非码属性不包含在任何候选码中的属性称为非码属性。全码关系模式的所有数据组是这个关系模式的候选码,称为。,2006年4月12日,11,关系数据结构及形式化定义,关系可以有三种类型基本关系基本表是实际存在的表,它是实际存储数据的逻辑表示。查询表查询表是查询结果对应的表。视图表。视图表是由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据。,2006年4月12日,12,关系数据结构及形式化定义,对关系数据模型的数据结构“关系”的限定和扩充:无限关系在数据库系统中时无意义的。因此,限定关系数据模型中的关系必须是有限集合。通过为关系的每个列附加一个属性名的方法取消关系元组的有序性。例如,可以在表2l的笛卡尔积中取出一个子集来构造一个关系。由于研究生只师从于一个导师,学习某一个专业,所以笛卡尔积中的许多元组是无实际意义的,从中取出有实际意义的元组来构造关系。该关系的名字为SAP,属性名就取域名,即SUPERVISOR,SPECIALITY和 POSTGRADUATE。,2006年4月12日,13,关系数据结构及形式化定义,则这个关系可以表示为:SAP(SUPERVISOR,SPECIALITY,POSTGRADUATE)假设导师与专业是一对一的,即一个导师只有一个专业;导师与研究生是一对多的,即一个导师可以带多名研究生,而一名研究生只有一个导师。这样SAP关系可以包含三个元组,参看PAGE49表2.2 SAP关系,2006年4月12日,14,基本关系具有以下六条性质:,1.列是同质的,即每一列中的分量是同一类型的数据,来自同一个域。2.不同的列可以出自同一个域,称其中的每一列为一个属性,不同的属性要给予不同的属性名。3.列的顺序无所谓,即列的次序可以任意交换。4.任意两个元组不能完全相同。5.行的顺序无所谓,即行的次序可以任意交换。6.分量必须取原子值,即每一个分量都必须是不可分的数据项。注意:在许多实际关系数据库产品中,基本表并不完全具有这六条性质,例如,有的数据库产品能(如FoxPro)仍然区分了属性顺序和元组的顺序;许多关系数据库产品中,例如Oracle,FoxPro等,它们都允许关系表中存在两个完全相同的元组。,2006年4月12日,15,关系模式,定义2.4关系的描述称为关系模式。它可以形式化地表示为:R(U,D,dom,F),其中R为关系名,U为组成该关系的属性名集合,D为属性组U中属性所来自的域,dom为属性向域的映象集合,F为属性间数据的依赖关系集合。关系模式通常可以简记为:R(U)或R(A1,A2,An)其中R为关系名,A1,A2,An为属性名。而域名及属性向域的映象常常直接说明为属性的类型、长度。,2006年4月12日,16,关系数据库中的型和值的概念,在关系模型中,实体以及实体间的联系也是用关系来表示的。例如导师实体、研究生实体、导师与研究生之间的一对多联系都可以分别用一个关系来表示。在一个给定的应用领域中,所有实体及实体之间联系的关系的集合构成一个关系数据库。型和值关系数据库也有型和值之分。关系数据库的型也称为关系数据库模式,是对关系数据库的描述,它包括若干域的定义以及在这些域上定义的若干关系模式。关系数据库的值是这些关系模式在某一时刻对应的关系的集合,通常就称为关系数据库。,2006年4月12日,17,关系的完整性,关系模型的完整性规则是对关系的某种约束条件。关系模型中可以有三类完整性约束:实体完整性、参照完整性用户定义的完整性。其中实体完整性和参照完整性是关系模型必须满足的完整性约束条件,被称为是关系的两个不变性,应该由关系系统自动支持。,2006年4月12日,18,实体完整性,规则2.1 实体完整性规则:若属性A是基本关系R的主属性,则属性A不能取空值。实体完整性规则规定基本关系的所有主属性都不能取空值,而不仅是主码整体不能取空值。例如 学生选课关系 选修(学号,课程号,成绩)中,“学号、课程号”为主码,则“学号”和“课程号”都不能取空值,而不是整体不为空。,2006年4月12日,19,实体完整性规则说明如下:,实体完整性规则是针对基本关系而言的。一个基本表通常对应现实世界的一个实体集。现实世界中的实体是可区分的,即它们具有某种唯一性标识。相应地,关系模型中以主码作为唯一标识。主码中的属性即主属性不能取空值。所谓空值就是“不知道”或“不确定”的值。实体完整性的引申:主码也不能取重复值。,2006年4月12日,20,参照完整性,为什么需要参照完整性?现实世界中的实体之间往往存在某种联系,在关系模型中实体及实体间的联系都是用关系来描述的。这样就自然存在着关系域关系之间的引用。引用的时候,必须取基本表中已经存在的值。由此引出参照的引用规则。参照完整性规则就是定义外码与主码之间的引用规则。实例:学生实体和专业实体可以用下面的关系表示,其中主码用下划线标识:学生(学号,姓名,性别,专业号,年龄)专业(专业号,专业名)说明:这两个关系之间存在着属性的引用,即学生关系引用了专业关系的主码专业号。显然,学生关系中的“专业号”值必须是确实存在的专业的专业号,即专业关系中有该专业的记录。这也就是说,学生关系中的某个属性的取值需要参照专业关系的属性取值。,2006年4月12日,21,参照完整性例2,学生、课程、学生与课程之间的多对多联系可以如下三个关系表示:学生(学号,姓名,性别,专业号,年龄)课程(课程名,学分)选修(学号,课程号,成绩)参照关系:选修被参照关系:学生、课程,2006年4月12日,22,参照完整性例3学生(学号,姓名,性别,专业号,年龄,班长)班长的学号引用了本关系的“学号”定义2.5设F是基本关系R的一个或一组属性,但不是关系R的码,如果F与基本关系S的主码Ks相对应,则称F是基本关系R的外码(Foreign Key),并称基本关系R为参照关系,基本关系S为被参照关系或目标关系。关系R和S不一定是不同的关系。注意F不能是关系R的主码,Ks必须是关系S的主码。显然,目标关系S的主码Ks和参照关系的外码F必须定义在同一个(或一组)域上。需要指出外码并不一定要与相应的主码同名。在实际应用当中,为了便于识别,当外码与相应的主码属于不同的关系时,往往给它们取相同的名字。,2006年4月12日,23,规则2.2 参照完整性规则若属性(或属性组)F是基本关系R的外码,它与基本关系S的主码Ks相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:或者取空值(F的每个属性值均为空值);或者等于S中某个元组的主码值。,2006年4月12日,24,用户定义的完整性,不同的关系数据库系统根据其应用环境的不同,往往还需要一些特殊的约束条件,用户定义的完整性就是针对某一具体关系数据库的约束条件。例如,成绩的取值必须在0100之间。,2006年4月12日,25,关系代数,关系代数是一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式,它是用对关系的运算来表达查询的。熟悉表2.4的关系代数运算符。,2006年4月12日,26,传统的集合运算,1.并 2.差 3.交4.广义笛卡儿积,2006年4月12日,27,专门的关系运算:选择、投影、连接、除等。,为了叙述上的方便,先引入几个记号。设关系模式为R(A1,A2,AN)。它的一个关系设为R。tR表示t是R的一个元组。tAi则表示元组t中相应于属性Ai上的一个分量。若A=Ai1,Ai2,Aik,其中Ai1,Ai2,Aik是A1,A2,AN中的一部分,则A称为属性列或域列。tA=(tAi1,tAi2,tAik)表示元组t在属性列A上诸分量的集合。则表示(A1,A2,AN)中去掉Ai1,Ai2,Aik后剩余的属性组。,2006年4月12日,28,R为n目关系,S为m目关系。trR,tsS,tr ts称为元组的连接。它是一个nm列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。给定一个关系R(X,Z),X和Z为属性组。定义当tX=x时,x在R中的象集为:Zx=tZ|tR,tX=x它表示R中属性组X上值为x的诸元组在Z上分量的集合。,2006年4月12日,29,下面给出关系运算的定义:,1选择F(R)t|tRF(t)=真F表示选择条件,是一个逻辑表达式。选择运算实际上是从关系R中选取使逻辑表达式F为真的元组。这是从行的角度进行的运算。表达式不仅可以用列名构造也可以用列序号构造。,2006年4月12日,30,例子参看P59图2.3,“学生课程”数据库中包括三个表:(1)“学生”表Student由学号(Sno)、姓名(Sname)、性别(Ssex)、年龄(Sage)、所在系(Sdept)五个属性组成,可记为:Student(Sno,Sname,Ssex,Sage,Sdept)Sno(2)“课程”表Course由课程号(Cno)、课程名(Cname)、先修课号(Cpno)、学分(Ccredit)四个属性组成,可记为:Course(Cno,Cname,Cpno,Ccredit)Cno(3)“学生选课”表SC由学号(Sno)、课程号(Cno)、成绩(Grade)三个属性组成,可记为:SC(Sno,Cno,Grade)(SNO,CNO),2006年4月12日,31,例1 查询信息系(IS系)全体学生 Sdept=IS(Student)或 5=IS(Student)例2 查询年龄小于20岁的元组 Sage20(Student)或420(Student)结果如图p60图2.4,2006年4月12日,32,2投影,A(R)tA|tR 关系R上的投影使从R中选择出若干属性列组成新的关系。投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组,因为取消了某些属性列后,就可能出现重复行,应取消这些完全相同的行。例3:查询学生关系Student在学生姓名和所在系两个属性上的投影 Sname,Sdept(Student)或2,5(Student)结果如p61图2-5(a)。例4 查询学生关系Student中都有哪些系,即查询学生关系Student在所在系属性上的投影 Sdept(Student)结果如p61图2-5(b)。,2006年4月12日,33,3连接,连接也称为 连接。它是从两个关系的笛卡儿积中选取属性间满足一定条件的元组。记做:其中A和B分别为R和S上度数相等且可比的属性组。是比较运算符。连接运算从R和S的广义笛卡儿积RS中选取在A属性组上的值域在B属性组上值满足比较关系 的元组。,2006年4月12日,34,等值连接和自然连接,等值连接。它是从关系R与S的广义笛卡儿积中选取A,B属性值相等的那些元组,等值连接为:自然连接自然连接是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性组,并且在结果中把重复的属性列去掉。即若R和S具有相同的属性组B,则自然连接可记做:p6162的例5,2006年4月12日,35,4除,给定关系R(X,Y)和S(Y,Z),其中X,Y,Z为属性组。R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影,元组在X上分量值x的象集Yx包含S在Y上投影的集合。RS=trX|tr Ry(S)YX 其中Yx为x在R中的象集,x=trX除操作是同时从行和列的角度进行运算。,2006年4月12日,36,例子,例6 设关系R,S分别为图2-9中的(a)和(b),RS的结果为图2-9(c),2006年4月12日,37,在关系R中,A可以取四个值a1,a2,a3,a4。其中:a1的象集为(b1,c2),(b2,c3),(b2,c1)a2的象集为(b3,c7),(b2,c3)a3的象集为(b4,c6)a4的象集为(b6,c6)S在(B,C)上的投影为(b1,c2),(b2,c3),(b2,c1)显然只有a1的象集(B,C)包含S在(B,C)属性组上的投影,所以RS=a1,2006年4月12日,38,例7查询至少选修1号课程和3号课程的学生号码首先建立一个临时关系K:Cno 1 3然后求:结果为95001,2006年4月12日,39,例8查询选修了2号课程的学生的学号例9查询至少选修了一门其直接先行课为5号课程的学生姓名例10查询选修了全部课程的学生号码和姓名,2006年4月12日,40,关系代数总结与补充,基本运算一元运算选择、投影、更名。多元运算笛卡儿积、并、集合差。其它运算集合交、自然连接、除、赋值。扩展运算广义投影、外连接、聚集。修改操作插入、删除、更新。,2006年4月12日,41,一些记号,给定关系模式R(A1,A2,An),设R是它的一个具体的关系,tR是关系的一个元组。分量设tR,则tAi表示元组t中相应于属性Ai的一个分量。属性列A=Ai1,Ai2,AikA1,A2,An,称A为属性列。A表示A1,A2,An中去掉A后剩余的属性组。tAi=(tAi1,tAi2,tAik)。,2006年4月12日,42,选择运算,基本定义在关系R中选择满足给定条件的元组(从行的角度)。F(R)=t|t R F(t)=真F是选择的条件,t R,F(t)要么为真,要么为假。F的形式:由逻辑运算符连接关系表达式而成。逻辑表达式:,关系表达式:X Y X,Y是属性名、常量、或简单函数。是比较算符,,示例找年龄不小于20的男学生。AGE20 SEX=男(S),2006年4月12日,43,投影,定义从关系R中取若干列组成新的关系(从列的角度)。A(R)=tA|tR,AR投影的结果中要去掉相同的行。示例:找001号学生所选修的课程号。C#(S#=001(SC),R,B,C(R),2006年4月12日,44,并运算,定义所有至少出现在两个关系中之一的元组集合。RS=r|rR rS 两个关系R和S若进行并运算,则它们必须是相容的:关系R和S必须是同元的,即它们的属性数目必须相同。对i,R的第i个属性的域必须和S的第i个属性的域相同。示例求选修了001号或002号课程的学生号。方案1:S#(C#=001 C#=002(SC)方案2:S#(C#=001(SC)S#(C#=002(SC),RS,2006年4月12日,45,差运算,定义所有出现在一个关系而不在另一关系中的元组集合。RS=r|rR rS R和S必须是相容的。示例求选修了001号而没有选002号课程的学生号。S#(C#=001(SC)S#(C#=002(SC),RS,2006年4月12日,46,更名运算,定义给一个关系表达式赋予名字x(E)返回表达式E的结果,并把名字x赋给E。x(A1,A2,An)(E)返回表达式E的结果,并把名字x赋给E,同时将各属性更名为A1,A2,An。关系被看作一个最小的关系代数表达式,可以将更名运算施加到关系上,得到具有不同名字的同一关系。这在同一关系多次参与同一运算时很有帮助。,2006年4月12日,47,广义笛卡尔积运算,元组的连串(Concatenation)若r=(r1,rn),s=(s1,sm),则定义r与s的连串为:rs=(r1,rn,s1,sm)定义两个关系R,S,其度分别为n,m,则它们的笛卡尔积是所有这样的元组集合:元组的前n个分量是R中的一个元组,后m个分量是S中的一个元组。RS=rs|rR sS RS的度为R与S的度之和,RS的元组个数为R和S的元组个数的乘积。思考题:求张三同学计算机成绩,列出其学号、姓名、课程名、成绩求数学成绩比王红同学高的学生。,2006年4月12日,48,交运算,定义所有同时出现在两个关系中的元组集合。RS=r|rR rS 交运算可以通过差运算来重写:RS=R(R S)示例求选修了001号和002号课程的学生号。S#(C#=001(SC)S#(C#=002(SC),RS,2006年4月12日,49,连接(),定义从两个关系的广义笛卡儿积中选取给定属性间满足一定条件的元组。R S=rs|rR sS rASB A,B为R和S上度数相等且可比的属性列。为算术比较符,为等号时称为等值连接。R S=rA SB(RS),A B,A B,2006年4月12日,50,连接(),求数学成绩比王红同学高的学生提示:先形成王红数学成绩表,再形成所有同学的数学成绩表,连接条件设为表1中的成绩小于表2中的成绩想一想,还有没有其它的查询方法。,R S,B D,R,S,2006年4月12日,51,自然连接(),定义从两个关系的广义笛卡儿积中选取在相同属性列B上取值相等的元组,并去掉重复的行。R S=rsB|rR sS rB=SB 自然连接与等值连接的不同自然连接中相等的分量必须是相同的属性组,并且要在结果中去掉重复的属性,而等值连接则不必。当R与S无相同属性时,R S RS。,2006年4月12日,52,自然连接(),思考题:列出学号为99001的学生成绩表,要求列出学号、姓名、课程名、成绩,R,S,R S,2006年4月12日,53,除运算,象集(Image Set)关系R(X,Z),X,Z是属性组,x是X上的取值,定义x在R中的象集为Zx=tZ|tR tX=x 从R中选出在X上取值为x的元组,去掉X上的分量,只留Z上的分量。除定义R(X,Y)S(Y,Z)=x|x=rx rR YxY(S)R(X,Y)S(Y)=x|x=rx rR YxS RS中的元组x满足性质:对yY(S),都有xyR。RS=X(R)X(X(R)Y(S)R)思考题求同时选修了001和002号课程的学生学号求选修了张军同学所选全部课程的学生学号求选修了所有课程的同学的学号,2006年4月12日,54,*赋值运算,定义为使查询表达简单、清晰,可以将一个复杂的关系代数表达式分成几个部分,每一部分都赋予一个临时关系变量,该变量可被看作关系而在后面的表达式中使用。临时关系变量关系代数表达式。赋值给临时关系变量只是一种结果的传递,而赋值给永久关系则意味着对数据库的修改。示例RS=X(R)X(X(R)Y(S)R)用赋值重写为:temp1 X(R),temp2 X(temp1 Y(S)R)result temp1 temp2,2006年4月12日,55,关系代数查询实例,求选修了其先行课为001号课程的学生名。下面哪个方案更高效?想一想,还有没有别的方案?方案1:SName(cpno=001(SC C S)方案2:SName(cpno=001(C)SC S)求未选修001号课程的学生号。下面哪个方案正确?方案1:Sno(Cno 001(SC)方案2:Sno(S)Sno(Cno=001(SC)求仅选修了001号课程的学生号。选修001号课程的学生仅选001号课程之外的学生S#(C#=001(SC)S#(SCC#=001(SC),2006年4月12日,56,*广义投影,定义在投影列表中使用算术表达式来对投影进行扩展。F1,F2,Fn(E)F1,F2,Fn 是算术表达式。示例求教工应缴纳的所得税。P#,SAL*5/100(PROF)p#,INCOME-TAX(P#,SAL*5/100(PROF),2006年4月12日,57,外连接(),列出老师的有关信息,包括姓名、工资、所教授的课程。P#,PN,SAL,C#,CN(PROF)PC C)问题:假设在PROC表中有教师张三,可他没有教课记录,在表PC中没有他的记录,他的记录会出现上述的查询结果中吗?,库结构如下:DEPT(D#,DNAME,DEAN)S(S#,SNAME,SEX,AGE,D#)COURSE(C#,CN,PC#,CREDIT)SC(S#,C#,SCORE)PROF(P#,PNAME,AGE,D#,SAL)PC(P#,C#),2006年4月12日,58,外连接(),外连接为避免自然连接时因失配而发生的信息丢失,可以假定往参与连接的一方表中附加一个取值全为空值的行,它和参与连接的另一方表中的任何一个未匹配上的元组都能匹配,称之为外连接。外连接=自然连接+失配的元组。外连接的形式左外连接、右外连接、全外连接左外连接=自然连接+左侧表中失配的元组。右外连接=自然连接+右侧表中失配的元组。全外连接=自然连接+两侧表中失配的元组。,2006年4月12日,59,外连接(),所有老师的信息,2006年4月12日,60,外连接(),所有课程的信息,2006年4月12日,61,外连接(),所有老师和课程的信息,2006年4月12日,62,聚集函数(),定义求一组值的统计信息,返回单一值。使用聚集的集合可以是多重集,即一个值可以重复出现多次。如果想去除重复值,可以用连接符-将distinct附加在聚集函数名后,如sum-distinct。sum:求和。求全体教工的总工资。sumSAL(PROF)求001号学生的总成绩。sumSCORE(S#=001(SC),2006年4月12日,63,聚集函数(),avg:求平均。求001号同学选修课程的平均成绩。avgSCORE(S#=001(SC)count:计数。求001号同学选修的课程数。countC#(S#=001(SC)求任课老师的总数。count-distinctP#(PC),2006年4月12日,64,聚集函数(),max:求最大值。min:求最小值。求学生选修数学的最高成绩。maxSCORE(CN=数学(C)SC)分组将一个元组集合分为若干个组,在每个分组上使用聚集函数。属性下标 G 聚集函数属性下标(关系),对此属性在每个分组上运用聚集函数,按此属性上的值对关系分组,2006年4月12日,65,聚集函数(),分组运算G 的一般形式G1,G2,.,Gn G F1,A1,F2,A2,Fm,Am(E)Gi是用于分组的属性,Fi是聚集函数,Ai是属性名。G 将E分为若干组,满足:1)同一组中所有元组在G1,G2,.,Gn上的值相同。2)不同组中元组在G1,G2,.,Gn上的值不同。示例:求每位学生的总成绩和平均成绩。S#G sumSCORE,avgSCORE(SC),2006年4月12日,66,数据库修改(),删除将满足条件的元组从关系中删除。r r E是对永久关系的赋值运算。例:删除001号老师所担任的课程。PC PC PC#=001(PC)删除没有选课的学生。S S(S#(S)S#(SC)S,关系代数表达式,关系,2006年4月12日,67,数据库修改(),插入插入一个指定的元组,或者插入一个查询结果。r r E例:新加入一个老师PC PC(P07,“周正”,750,D08)加入计算机系学生选修“数学”的信息。SC SC S#(S DN=计算机系(DEPT)C#(CN=数学(C),2006年4月12日,68,数据库修改(),更新利用广义投影改变元组的某些属性上的值。r F1,F2,Fn(r)例:给每位老师上调10%的工资。PC P#,PN,SAL SAL*1.1,D#(PC)对工资超过800的老师征收5%所得税。PC P#,PN,SAL SAL*0.95,D#(SAL 800(PC)P#,PN,SAL,D#(SAL 800(PC),2006年4月12日,69,例题分析:,例7:本题要查询至少选修了1号课程和3号课程的学生号码。也就是查询选修课程包含了1和3的学生,因此可以用除法。思考还有其他什么方法可以表示此查询?方法一最简单的想法是,先找到选修了1的学生,然后找到选修了3的学生,求其交集就是至少选修了1和3的学生。方法二至少选修了1和3可以理解为学生选修了1并且选修了3。那么可以构造cno=1 cno=3。但SC表只有一列cno,学生选课记录在不同的行里,所以考虑扩充cno列。那么可以建立SC表自身到自身的连接(写为SC1和SC2),以学号做连接条件,这样得到的结果是学生所选课程中人选两个的排列。所以如果SCo=1 SCo=3则表示至少选修了1和3。思考,如果要查询只选修了1和3的学生该如何做?只选修了1和3的集合可以表示成至少选修了1和3的集合减去选修了1和3并且选修了其他课程的集合。因此,构造R1为至少选择了1和3的集合。然后用R1再和SC(SC3)进行连接,条件依然是学号。那么SCo和SCo的值为1和3,只要SCo的值不为1也不为3,那么这样的学生就是选修了1和3并且选修了其他课程的学生。,2006年4月12日,70,例9:,题目:查询至少选修了一门其直接先行课为5号课程的学生姓名。先找到直接先行课为5的课程,然后和SC构造连接,找到选修了这样课程的记录,再和学生表连接则可找到其姓名。课后习题:3,5,7,