欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    无穷小与无穷大、极限运算法则少课时.ppt

    • 资源ID:4914701       资源大小:239.50KB        全文页数:15页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    无穷小与无穷大、极限运算法则少课时.ppt

    ,三、复合函数的极限运算法则,一、无穷小运算法则,极限运算法则,当,一、无穷小运算法则1、无穷小,定义1.若,时,函数,则称函数,例如:,函数,当,时为无穷小;,函数,时为无穷小;,函数,当,为,时的无穷小.,时为无穷小.,机动 目录 上页 下页 返回 结束,说明:,除 0 以外任何很小的常数都不是无穷小!,时,函数,(或),则称函数,为,定义1.若,(或),则,时的无穷小.,机动 目录 上页 下页 返回 结束,其中 为,时的无穷小量.,定理 1.(无穷小与函数极限的关系),无穷小的重要性质,有界量与无穷小量的乘积是无穷小;有限多个无穷小量的和是无穷小;常数与无穷小量的乘积是无穷小;有限多个无穷小量的乘积也是无穷小。,2、无穷大,定义2.若任给 M 0,一切满足不等式,的 x,总有,则称函数,当,时为无穷大,使对,若在定义中将 式改为,则记作,(正数 X),记作,总存在,机动 目录 上页 下页 返回 结束,注意:,1.无穷大不是很大的数,它是描述函数的一种状态.,2.函数为无穷大,必定无界.但反之不真!,例如,函数,当,但,不是无穷大!,机动 目录 上页 下页 返回 结束,例.证明,证:任给正数 M,要使,即,只要取,则对满足,的一切 x,有,所以,若,则直线,为曲线,的铅直渐近线.,渐近线,说明:,机动 目录 上页 下页 返回 结束,3、无穷小与无穷大的关系,若,为无穷大,为无穷小;,若,为无穷小,且,则,为无穷大.,则,据此定理,关于无穷大的问题都可转化为 无穷小来讨论.,定理2.在自变量的同一变化过程中,说明:,机动 目录 上页 下页 返回 结束,二、极限的四则运算法则,则有,定理3.若,B0时,,说明:定理 可推广到有限个函数加减与乘的情形.,推论 1.,(C 为常数),推论 2.,(n 为正整数),且,定理4.若,定理5.若,则有,提示:因为数列是一种特殊的函数,故此定理 可由,定理3 直接得出结论.,极限的四则运算,基本运算见教材P45:例1,例2,设 n 次多项式,试证,设有分式函数,其中,都是,多项式,试证:,若,说明:若,不能直接用商的运算法则.,一般有如下结果:,为非负常数),(如 P47 例5),(如 P47 例6),(如 P47 例7),三、复合函数的极限运算法则,说明:在定理6的条件下,求复合函数的极限时,函数符号与极限符号可以交换次序。,定理6,内容小结,1.极限运算法则,(1)无穷小无穷大运算法则,(2)极限四则运算法则,(3)复合函数极限运算法则,注意使用条件,2.求函数极限的方法,(1)分式函数极限求法,时,用代入法,(要求分母不为 0),时,对,型,约去公因子、分子有理化,时,分子分母同除最高次幂,“抓大头”,(2)复合函数极限求法,

    注意事项

    本文(无穷小与无穷大、极限运算法则少课时.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开