503...季节蔬菜致富后,盖起了一座三层楼房,现正在装修,准备安装照....ppt
小刚家因种植反季节蔬菜致富后,盖起了一座三层楼房,现正在装修,准备安装照明灯,他和他父亲一起去灯具店买灯具,灯具店老板介绍说:一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元两种灯的照明效果是一样的父亲说:“买白炽灯可以省钱”而小刚正好读八年级,他在心里默算了一下说:“还是买节能灯吧”父子二人争执不下,如果当地电费为0.6元千瓦.时,请聪明的你帮助他们选择哪种灯可以省钱呢?,问题1节省费用的含义是什么呢?,哪一种灯的总费用最少,问题2 灯的总费用由哪几部分组成?,灯的总费用=灯的售价+电费,电费=0.6灯的功率(千瓦)照明时间(时).,问题3 如何计算两种灯的费用?,设照明时间是x小时,节能灯的费用y1元表示,白炽灯的费用y2元表示,则有:y1 600.60.01x;y2=3+0.60.06x.,观察上述两个函数若使用节能灯省钱,它的含义是什么?,若使用白炽灯省钱,它的含义是什么?,若使用两种灯的费用相等,它的含义是什么??,y1 y2,y1 y2,y1 y2,若y1 y2,则有600.60.01x 3+0.60.06x,解得:x1900,即当照明时间大于1900小时,购买节能灯较省钱,若y1 y2,则有600.60.01x 3+0.60.06x,解得:x1900,即当照明时间小于1900小时,购买白炽灯较省钱,若y1 y2,则有600.60.01x 3+0.60.06x,解得:x1900,即当照明时间等于1900小时,购买节能灯、白炽灯均可,解:设照明时间是x小时,节能灯的费用y1元表示,白炽灯的费用y2元表示,则有:y1 600.60.01x;y2=3+0.60.06x.,若y1 y2,则有600.60.01x 3+0.60.06x,即当照明时间大于1900小时,购买节能灯较省钱,若y1 y2,则有600.60.01x 3+0.60.06x,解得:x1900,即当照明时间小于1900小时,购买白炽灯较省钱,若y1 y2,则有600.60.01x 3+0.60.06x,解得:x1900,即当照明时间等于1900小时,购买节能灯、白炽灯均可,解得:x1900,即当照明时间等于1900小时,购买节能灯、白炽灯均可,能否利用函数解析式和图象也可以给出解答呢?,解:设照明时间是x小时,节能灯的费用y1元表示,白炽灯的费用y2元表示,则有:y1 600.60.01x;y2=3+0.60.06x.即:y1 0.006x 60 y2=0.036x+3,由图象可知,当照明时间小于1900时,y2 y1,故用节能灯省钱;当照明时间等于1900小时,y2y1购买节能灯、白炽灯均可,方法总结,1、建立数学模型列出两个函数关系式2、通过解不等式或利用图象来确定自变量的取值范围。3、选择出最佳方案。,变一变(1),若一盏白炽灯的使用寿命为2000小时,一盏节能灯的使用寿命为6000小时,如果不考虑其它因素,以6000小时计算,使用哪种照明灯省钱?省多少钱?,解:节能灯6000小时的费用为:,白炽灯6000小时的费用为:,60+0.60.01600096(元),(3+0.60.062000)3225(元),节省钱为:225-96129(元),答:使用节能灯省钱,可省129元钱。,如果灯的使用寿命是3000小时,而计划照明3500小时,则需要购买两个灯,试计划你认为能省钱的选灯方案.,买灯的方案有三种:1.一个节能灯,一个白炽灯;2.两个节能灯;3.两个白炽灯.,变一变(2),课堂小结,本节课你有哪些收获?,练习,1、如图所示,L1反映了某公司产品的销售收入和销售数量的关系,L2反映产品的销售成本与销售数量的关系,根据图象判断公司盈利时销售量()A、小于4件、大于4件、等于4件、大于或等于4件,如图是甲、乙两家商店销售同一种产品的销售价y元与销售量x件之间的函数图象,下列说法(1)售2件时,甲、乙两家的售价相同;(2)买一件时买乙家的合算;(3)买3件时买甲家的合算;(4)买乙家的1件售价约为3元。其中说法正确的是:.,(1)(2)(3),课后调查:统计自己家的节能灯,白炽灯,日光灯的售价和功率以及使用寿命,计算各种灯的总费用,向爸爸,妈妈提供一个最佳购灯方案。,