leslie人口增长模型模型.docx
人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期 趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提 出了有关人口控制与管理的措施。模型I:建立了 Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找 补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模 型,进行预测,把预测结果与附件1国家人口发展战略研究报告中提供的预测值进 行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线 的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、 2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。模型II:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型 (Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相 应的Leslie模型。首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见 附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进 行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人, 在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构 方面的调整。其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本 世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达 33.277%; 65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女 人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。最后,分别对模型I与模型II进行残差分析、优缺点评价与推广。关键词Logistic人口模型Leslie人口模型 人口增长预测MATLAB软件§1、问题重述一、背景知识:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。我国人口发 展经历了多个阶段,近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加 速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的 增长。全面建设小康社会时期是我国社会快速转型期,人口发展面临着前所未有的复杂 局面,人口安全面临的风险依然存在二、相关数据:附件1国家人口发展战略研究报告附件2人口数据(中国人口统计年鉴中的部分数据)及其说明根据已有数据三、要解决的问题:1、试从中国的实际情况和人口增长的上述特点出发,参考附件2中的相关数据(也 可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人 口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。2、利用所建立模型的预测结果,参照附件1的相关叙述对反映中国人口增长特点 的一系列指标如人口老龄化、人口抚养比等进行分析预测。3、根据模型的计算结果,对未来人口发展高峰进行预测并针对中国人口的调控和 管理进行分析。§2、问题分析人口的变化受到众多方面因素的影响,因此对人口的预测与控制也就十分复杂,很 难在一个模型中综合考虑到各个因素的影响。为了更好的解决此问题,我们分析了题目 以及附录1中所给的相关信息,考虑到可以根据对人口增长不同的评价指标及不同的时 期建立多个模型分别加以讨论。一、从附件1中,我们看到过去一些专家对中国的总人口数做出了 2010年、2020 年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右的预测。因而, 我们也可以先对总人口的增长趋势做出自己的预测与专家预测数据进行比较,对于预测 所要用到的一些相关数据,我们作了相应的补充,由此我们建立了模型I:阻滞增长模 型。二、模型I只考虑了人口总数,对人口总数进行了预测分析。但实际中在对人口进 行分析时,按年龄段分布的人口结构是非常重要的。在人口总数一定时,不同年龄段的 人的生育率和死亡率是不同的,它们对人口未来发展的影响也是很不一样的。为了讨论 不同年龄段的人口分布对人口增长的影响,我们依据附件2建立了模型II:按年龄分布 的Leslie模型。三、由模型I和模型II的结果我们预测了人口总数的发展趋势,由模型II的计算结 果我们还能够得到各年份处在各年龄段的人口数量、男女比率的预测值。根据这些预测 值我们可以计算出反映人口增长特点的其他指标,由此我们可以对模型的计算结果进行 进一步的分析。§3、合理的假设1、社会稳定,不会发生重大自然灾害和战争b ,S不随时间而变化2、超过90岁的妇女(老寿星)都按90岁年龄计算3、在较短的时间内,平均年龄变化较小,可以认为不变4、不考虑移民对人口总数的影响§4、名词解释与符号说明一、名词解释1、总和生育率一一指一定时期(如某一年)各年龄组妇女生育率的合计数,说明 每名妇女按照某一年的各年龄组生育率度过育龄期,平均可能生育的子女数,是衡量生 育水平最常用的指标之一。2、更替水平一一指这样一个生育水平,同一批妇女生育女儿的数量恰好能替代她 们本身。一旦达到生育更替水平,出生和死亡将逐渐趋于均衡,在没有国际迁入与迁出 的情况下,人口将最终停止增长,保持稳定状态。3、人口抚养比一一指人口总体中非劳动年龄人口数与劳动年龄人口数之比。通常 用百分比表示。说明每100名劳动年龄人口大致要负担多少名非劳动年龄人口。用于 从人口角度反映人口与经济发展的基本关系。根据劳动年龄人口的两种不同定义(15-59岁人口或15-64岁人口),计算总抚养有两种方式4、人口老龄化一一指人口中老年人比重日益上升的现象。促使人口老龄化的直接 原因是生育率和死亡率降低,主要是生育率降低。一般认为,如果人口中65岁及以上 老年人口比重超过7%,或60岁及以上老年人口比重超过10%,那么该人口就属于老年 型。5、出生人口性别比一一是活产男婴数与活产女婴数的比值,通常用女婴数量为100 时所对应的男婴数来表示。正常情况下,出生性别比是由生物学规律决定的,保持在 103107之间。二、符号说明序号符号意义1:t表示年份(选定初始年份的t = 0)2r人口增长率3:x人口数量4:x自然资源和环境条件所能容纳的最大人口数量5:mR 2可决系数6:n (t), i = 1,2,m在时间段t第i年龄组的人口总数7:ib(i = 0,1,2,90)第i年龄组的生育率8:d(i = 0,1,2,90)第i年龄组的死亡率9:s (i = 0,1,2,90)第i年龄组的存活率10:iLLeslie矩阵11:Z2001年全国人口总数12:0 z2001年城市总人口13:sz2001年镇总人口14:z zx2001年乡总人口15:n (0), i = 1,2, m2001年第i年龄段的人口总数16:iv.(i = 1,2,3)i = 1,2,3时分别表示市、镇、乡的女孩出生率17:'乙(j)j时段具有劳动能力的人口18:P (j)社会的抚养比指数19:k总和生育率20:K (j)j时段i年龄组中女性所占的百分比§5、模型的建立与求解模型1:阻滞增长模型(Logistic模型)1一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增 长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口 增长率r的影响上,使得r随着人口数量x的增加而下降。若将r表示为x的函数r(x)。 则它应是减函数。于是有:dx,.、 = r(x)x , x(0) = x°(1)对r(x)的一个最简单的假定是,设r(x)为x的线性函数,即r(x) = r 一 sx (r > 0 , s > 0)(2)设自然资源和环境条件所能容纳的最大人口数量xm,当x = xm时人口不再增长,即 增长率r(xm) = 0,代入(2)式得s =,于是(2)式为mr (x) = r (1 一一)(3)xm将(3)代入方程(1)得:dxx、(4)(5)=rx(1 ) dtxx(0) = x m 0解方程(4)可得:,八xx(t) = mx1 + (m 1)e - rtx0二、模型的建立为了对以后一定时期内的人口数做出预测,我们首先从中国经济统计数据库 (http:/211.86.245.155/index.aspx)上查到我国从 1954 年到 2005 年全国总人口的数据如表1。表1 各年份全国总人口数(单位:千万)年份 总人口195460.2195561.5195662.8195764.6195866.0195967.2196066.2196165.9196267.3年份196319641965196619671968196919701971总人口69.170.472.574.576.378.580.783.085.2年份197219731974197519761977197819791980总人口87.189.290.992.493.795.096.25997.598.705年份198119821983198419851986198719881989总人口100.1101.654103.008104.357105.851107.5109.3111.026112.704年份199019911992199319941995199619971998总人口114.333115.823117.171118.517119.850121.121122.389123.626124.761年份1999200020012002200320042005总人口125.786126.743127.627128.453129.227129.988130.7561、将1954年看成初始时刻即t = 0,则1955为t = 1,以次类推,以2005年为t = 51 作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab编程(程序见 附录1)得到相关的参数x =180.9871,尸= -0.0336,可以算出可决系数(可决系数是判 别曲线拟合效果的一个指标):"y)2i iR2 = 1 - 4= 0.9959乙(y - y)2ii=1由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲 线:/、180.9871(6)x(t)=() 4180.9871 八1 + ( 1)e -0.0.0336t60.2根据曲线(6)我们可以对2010年(t = 56)、2020年(t = 66)、及2033年(t = 79) 进行预测得(单位:千万):x(56) = 138.6161, x(66) = 148.5400, x(79) = 158.6028结果分析:从附录1所给信息可知从1951年至1958年为我国第一次出生人口高峰, 形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响 模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受 到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说 1951-1962年的人口增长的随机误差不是服从正态分布,由于上面的曲线拟合是用最小二乘法,所以很难保证拟合的准确性。因此我们再选 择1963年作为初始年份对表1中的数据进行拟合。2、将1963年看成初始时刻即t = 0,以2005年为t = 32作为终时刻。运用Matlab 编程(程序见附录2)得到相关的参数x =151.4513,尸=0.0484,可以算出可决系数 R 2 = 0.9994得到中国各年份人口变化趋势的另一拟合曲线:(7),、151.4513)=1 + ( 1)e -0.0484t69.1根据曲线(7)我们可以对2010年(t = 47 )、202 0年(t = 57 )、及2033年(t = 70 ) 进行预测得(单位:千万):x(47) = 134.9190, x(57) = 140.8168, x(70) = 145.5908结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别 是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人 口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布; 1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育 的政策是基本稳定的,这一阶段随机误差也应服从正态分布(当然均值与方差可能不同) 因此用最小二乘法拟合所得到的结果应有较大的可信度。3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人 口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此 我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。运用Matlab编程 (程序见附录3)得到相关的参数xm = 153.5351,尸=0.0477,可以算出可决系数 R2 = 0.9987得到中国各年份人口变化趋势的第三条拟合曲线:(8)153.5351X(t)=1 + ( 1)e -0.0477198.705根据曲线(7)我们可以对2010年(t = 30 )、202 0年(t = 40 )、及2033年(t = 53 ) 进行预测得(单位:千万):x(30) = 135.5357 , x(40) = 141.8440, x(53) = 147.0172结果分析:这一时期,国家虽然对人口大增长进行了干预,但国家的计划生育的政 策是基本稳定的,在此其间没有其他大的干扰,所以人口增长的随机误差应服从正态分 布。所以我们的结果应是比较可信的。我们分别根据拟合曲线(6)、(7)、(8)对各年份中国总人口进行预测得到结果如 表2:表2各年份全国总人口用不同拟合曲线预测数(单位:千万)年份全国总人口预测(单位:千万)预测曲线(6)预测曲线(7)预测曲线(8)2000126.7649126.3338126.4732003130.5141129.2303129.51682006134.1131.8447132.27582009137.516134.1926134.76382012140.7577136.2917136.99712015143.8231138.1607138.99332018146.7117139.819140.7712021149.4251141.2856142.34892024151.9662142.579143.74522027154.3392143.7168144.97782030156.5494144.7157146.06322033158.6028145.5908147.01722036160.5063146.3562147.85412039162.267147.0247148.58712042163.8924147.6077149.22842045165.3903148.1158149.78862048166.7683148.558150.2775由上表可以看出:用拟合曲线(6)预测得到的数据比较大,在2024年总人口就已 经超过了 151.9662千万,而且一直以比较快的速度增长到2048年达到了 166.7683千万。 用拟合曲线(7)预测得到的数据偏小,到2048年人口只有148.558千万。相比较而言 用拟合曲线(8)预测的数据比较接近附件1中的预测。画出图形如图1:对各年份全国总人口的预测图1:对各年份全国总人口数的预测模型II:按年龄分布的Leslie模型2 一、模型的准备将人口按年龄大小等间隔地划分成m个年龄组(譬如每10岁一组),模型要讨论在 不同时间人口的年龄分布,对时间也加以离散化,其单位与年龄组的间隔相同。时间离 散化为t = 0,1,2 设在时间段t第i年龄组的人口总数为n (t),i = 1,2, m,定义向量 n(t) = n (t),n2(t),n (t)t,模型要研究的是女性的人口分布n(t)随t的变化规律,从而 进一步研究总2人口数等指标的变化规律。is不随时间f变化,根据b、s和n (t)的定义写出n (t)ii i ii设第i年龄组的生育率为b,即b是单位时间第i年龄组的每个女性平均生育女儿的 人数;第i年龄组的死亡率为d.,即d是单位时间第i年龄组女性死亡人数与总人数之 比,s = 1 -d称为存活率。设b、 与七(t+1)应满足关系:(9)n (t +1) = * b n (t)ii i=1 n (t +1) = s n (t), i = 1,2,m 一 1i+1在(9)式中我们假设b中已经扣除婴儿死亡率,即扣除了在时段t以后出生而活不 到t +1的那些婴儿。若记矩1阵b b bS 0(10)1L = 0 s2则(9)式可写作00 sm-1n(t +1) = Ln(t)(11)(12)当L、n(0)已知时,对任意的t = 1,2,有n(t) = Ltn(0)若(10)中的元素满足(i) s > 0 , i = 1,2,m -1 ;(ii) b > 0 ,i = 1,2,m,且至少一个b > 0。则矩阵L称为Leslie矩阵。只要我们求出Leslie矩阵L并根据人口分布的初始向量n(0),我们就可以求出t时 段的人口分布向量n(t)。二、模型的建立我们以2001年为初始年份对以后各年的女性总数及总人口数进行预测,根据附件2 中所给数据,以一岁为间距对女性分组。(1)计算2001年处在各个年龄上的妇女人数的分布向量n (0),(i = 0,1,2,-,90+):附件2给了 2001年中国人口抽样调查数据,提取为表3 '表3城市男147907城市女147465镇男80279镇女77976乡男394690乡女372242根据抽样调查的结果,可以算出2001年城市、镇、乡人口占2001年全国总人口的 比率分别为:p = 0.242, p = 0.1297, p = 0.6283我们由表1数据知2001年全国总人口 Z = 127.627 (单位:千万),因此可以算出 2001年城市、镇、乡的总人口分别为(单位:0千万):z = p x z = 30.885、z = p x z = 16.548、z = p x z = 80.194 s s 0zz 0x x 0根据附件2给的2001年城市、镇、乡各个年龄段的女性比率,可以分别算出2001 年城市、镇、乡处在第i (i = 0,1,2,90+)年龄段的女性的总数分别为 n (0) ,n (0) ,n (0)。以城市为例,设2001年城市中处在i年龄段妇女占城市总人口比1i2i3i率分别为P,则n (0) = P x Z (镇、乡类似)。于是可以算出2001年处在第 i1ii si (i = 0,1,2,90+)年龄段上的妇女总人数n (0) = n(0) + 七.(0) + 七(0)(见附录 7)。(2)计算处在第i(i = 0,1,2, . .,90+)年龄段的每个女性平均生育女儿的人数 b (i = 0,1,2,90+)。附件2中分别给出了 2001年城市、镇、乡育龄妇女(15岁一49岁) 的生育率(此处应该是包含男孩和女孩)i(i = 0,1,90+)( i < 15或i> 49时都为0),则可以分别算出2001年处在第i(i = 0,1,90+)年龄段的城市、镇、乡育龄妇女总共 生育的小孩数(包含男孩和女孩),记为:H (i = 15,16,49) , H (i = 15,16,49) , H (i = 15,16,49)。以城市为例计算H (i = 15,16,.-,49):、3;1iH (i = 15,16,49) = b *n (0)(i = 15,16,49)(镇、乡类似)。附件2中还分别给出了 2001年市、镇、乡的男女出生人口性别比匕,c2 ,% (女100计),据此可以分别计算出城市、镇、乡女孩的出生率u =/ (i = 1,2,3)。由此i 100 + ci就可以求出2001年处在第i(i = 15,.,49)年龄段的每个女性平均生育女儿的人数:,H x v + H x v + H x v b = 112233 (i = 15,49),i由于总和生育率:,=支= 1.389经计算得到总和生育率小于1.8,误差很大,我们 i=15对生育率进行修正:b = (1.8xv -S)/S + 1)*b具体计算结果见附录7。 计算第i年龄段的女性总存活率率d (i = 0,1,2,. ,90+):记第i(i = 0,1,2,90+)年龄段的女性的死亡率为d。附件2中分别给出了城市、镇、 乡处在第i(i = 0,1,2,.,90+)年龄段的女性死亡率L ,d° ,(i = 0,1,2,. ,90+),则 处在第i年龄段的女性总死亡率di (i = 0,1,2,. ,90+)为:1i 2i3id x n (0) + b x n (0) + b x n (0) d =12i23i3i(i = 0,1,2,90+),i于是总存活率为:5. = 1 - d见附录4。用EXCEL对计算出来的数据进行整理,然后运用 MATLAB软件进行编程,计算出Leslie矩阵,于是可以用上面(12 )式n(t) = Ltn(0)进行预测。三、对模型结果作进一步讨论我国人口发展形势复杂,目前人口的低生育水平面临着严峻的挑战,下面我们分别 从如下方面分析预测我国人口发展将要面临的复杂局面。(1) 人口总量与劳动力人口的发展变化根据考虑种群结构的Leslie离散模型,利用2001年的数据建立人口预测模型。通过分析,计算出我国人口的预测值,对应作出的我国劳动年龄人口与总人口的折线图 如下:图2我国全国总人口与劳动年龄人口折线图根据图2可以知道从2001年到2023年预测我国全国总人口是呈现上升趋势的,随 后几年呈现缓慢下降的趋势。总人口在2010年、2020年分别达到14.2609亿人和14.9513 亿人,在2023年达到峰值14.985亿人,在2033年达到14.7455亿人。把预测数值与附 件2中所提供的预测数值进行比较,发现我们预测的未来人口的高峰期提前10年。这 一方面可能由我国男女的出生性别比例中女性所占的比例较小的原因;另一方面,我们 计算出人口更替率仅为1.42 (此为5年的均值),而中外专家对我国90年代中期以来的 人口更替率的计算结果为1.8(见附录10),两者相差甚远,这说明附录-提供的数据 可能不够真实,从而导致了我国人口峰值的预测年份提前。根据图2,我国劳动年龄人口庞大,15-64岁的劳动年龄人口 2010年为10.4421亿 人,2013年将达到高峰10.4852亿人,随后劳动年龄人口呈现下降的趋势。由此,可知 在相当长的时间内,我国不缺劳动力,但需要加强劳动力结构性的调整,同时由于我国 计划生育等宏观政策的影响,近几年总和生育率已降低到1.8,并将稳定在1.8的水平 上,所以经过较长的时期,我国的劳动年龄人口将有所降低。(2)人口老龄化与人口抚养比通过计算分析人口结构持续老龄化,运用Leslie离散模型,通过MATLAB软件计算 出我国60岁以上与65岁以上的老龄人口数,做出散点图如下:我国老年人口预测94O26402240204027U243U213020QXU252U22XU2910261023102010270024UO21002年份60老年人65-老年人图3我国老年人口预测值的折线图从图3可以直观的看出我国老龄人口在持续增加,说明我国老龄化进程在加速。同时做出未来我国老龄人口占总人口的比例的折线图如下:60-老年人占总人数的比例一65-老年人占总人数的比例年份图4我国老龄人口占总人口预测比例的折线图从图3,图4得到:2001年我国60岁以上老年人口已达到1.5538亿人,占总人口 的11.5693%。到2020年,60岁以上老年人口将达到2.907亿人比重为19.443%; 65岁 以上老年人口将达到2.0628亿人比重从2000年的8.009%增长到13.797%。预计本世纪 40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%; 65岁以上老年人口达3.51亿人,比重达25.53%。综上可知我国老龄人口数量大,老龄 化速度快,高龄趋势明显,加上我国人口基数大,所以我国是个老龄人口多的国家。老龄化也在一定程度上导致了我国人口抚养比的不断增高。下面计算人口抚养比指 数:设l,.,l与七七分别为男性与女性中具有劳动能力的年龄组,则j时段具有劳动 能力的人口为2L=£ 1 % (j)N(i,j) + £ % N(i,j),i=Li=l而N(j) -L(j)为j时段由社会抚养的失去劳动能力与老人或尚未具有劳动能力的为成年 人的数量。定义社会的抚养比指数p (j) = N(j) - L(j),即平均每一劳动者抚养的无劳动L(j)能力的人数。我们以0 14岁为没有劳动能力的儿童,以15-64岁为具有劳动能力的年 龄劳动人口,以65岁及以上的为老龄人口。首先,通过MATLAB编程计算出2002到2051 年0-14岁、15-64岁、65岁及5以上三段的人数;其次,根据人口抚养比的含义,计 算出每一年份的人口抚养比得出人口抚养比。得出的每年人口抚养比的折线图如下:0.70.60.5例0.4 比0.3人口抚养比94026402040204027302402130282U252U222U29102610201027QU24QU21QU2 2 10口总抚养比图5预测人口抚养比从图5可以看出预测的以后各年的人口抚养比呈增长的趋势。人口抚养比比较高 主要原因有:每年新生婴儿数目在增加;老龄化的加剧,老龄人口数量大;15-64岁年 龄段中的人的残疾、生病而无劳动能力等。(3)人口调控与管理现阶段我国生育水平的不稳定性,根据建立的Leslie模型,运用MATLAB软件计 算出2000年到2050年我国育龄妇女(15-49岁)人口,并做出的散点图如下:380360340320300280260240 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050年份图6未来我国育龄妇女(15-49岁)人口预测从图6中可以看出我国育龄妇女(15-49岁)人口在2010年左右到达到高峰,从图7我们发现,我国生育旺盛期育龄妇女(20-29)人数在2012年将达到高峰, 到 2025年左右有进入一个小低谷,然后再2037年左右有达到一个小高峰。第二个我国 生育旺盛期育龄妇女(20-29)人数小高峰的原因在于在2012年人口出生高峰期的女婴 到2037年时达到生育旺盛期,因此,在2025年生育旺盛期育龄妇女(20-29)人数达 到低谷时有回升的形势。§ 6、误差分析与灵敏度分析一、模型的残差分析:1、运用Matlab软件计算出用1954年到2005年的总人口数进行拟合产生的残差, 再利用EXCEL作出残差的散点图如下:残差分析系列1图8残差分析从图8可以看出残差在坐标轴x 0上下波动,但是,不是呈现正态分布,并且残 差绝对值之和为57.9992,是比较大,因此拟合的效果不太好。2、利用1963年到2005年的总人口数,根据Logistic模型的形式,用Matlab软 件进行拟合,并求出残差序列,再利用EXCEL进行处理,并作出残差散点图如下:图9残差分析图通过图9,可以看出残差值大致分布在坐标轴x的上下,呈现对称分布,又有Matlab 软件计算出拟合的残差绝对值之和为27.8046,因此效果较好。3、利用1980年到2005年的人口总数居,同样运用Matlab、EXCEL软件进行分析、 处理,作出散点图如下:残差分析0.6 -系列30.4 -0.2 - 0 ' 值如2 g 差-0.4 1-0.6 - -0.8 -1.2图10残差分析图通过Matlab软件计算,得出拟合的残差绝对值之和为10.1699,从图10可以看出, 图形基本关于坐标轴x 0对称,所以你和效果比较好。二、灵敏度分析:1、在不同的总合生育率k下按照前面的方法分别计算从2001年到2050年全国人 口总数的预测值(程序见附录6),并画出图形如图11120 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 年份图11:在不同的k值下对各年份全国总人口数的预测505044331111 人万干由图11可以看出当k值很小时人口增长比较缓慢,达到峰值后人口数量很快下降 出现严重负增长;当k值很大时人口增长速度很快,达到峰值后下降的速度缓慢,在此 情况下人口数量急剧膨胀。只有当k值适中时,总人口增长才比较稳定。2、再在不同的总和生育率k下按照前面的方法分别计算从2001年到2050年全国 老龄化变化趋势(程序见附录6),并画出图形如图1255.5 0 0数指化龄老0.65 I= -k=1.6 k=1.8 k=2.0 k=2.2 0.6 -0.45 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050年份图12:在不同的k值下对各年份老龄化变化趋势由图12可以看出k值越小,老龄化增大的速度越快;k值越大老龄化指数增长平缓 年龄结构稳定,有利于社会发展。由以上分析可知国家在制定人口政策时要多方面考虑,如果只看重对人口总数的控 制可能导致社会老龄化严重、劳动力不足这显然是不利于社会经济发展的;相反如果为 了防止社会老龄化加快而放任人口的增长,也会导致社会人口过多对资源和环境带来巨 大压力。因此只有掌握好一个“平衡点”正确制定政策才能使国民经济持续增长,人民 生活水平不断提高。§ 7、模型的评价与推广一、模型的优点:1、在用模型I对各年全国人口总数预测时结合实际情况,分别用不同时间段的数 据拟合确定了三个预测函数。并对三个函数预测的数据进行了对比分析,使模型的计算 结果更加准确。2、利用EXCEL软件对数据进行处理并作出各种平面图,简便,直观、快捷;3、运用多种数学软件进行计算,取长补短,使计算结果更加准确;4、在模型II中我们充分考虑到不同年龄的个体具有不同的生育能力和死亡率,采 用leslie模型,建立年龄结构的离散模型,并通过合理假设,在时间跨度不大的前提 下,对人口数量仅此进行了预测,得到人口数量变化趋势图2与国家人口发展战略研 究:人口发展预测课题中未来我国总人口,劳动人口及人口扶养比预测 及未来我国 人口老龄化预测趋势图基本一致。因为原始数据得到的人口总和生育率跟实际情况不 符,我们对此进行了合理修正,使预测更为准确。在模型I中我们还进行了参差分析, 在模型II中我们对不同的平均妇女生育胎数下人口总数及老龄化趋势进行了分析,得到 适合平均生育胎数的最佳值。二、模型的缺点:在模型假设中我们b及p不随时段的变迁而改变这一理想状态下,但出生率及死亡 率会随时间的变化而有所该变,本模型没有建立b.与死亡率随时间变化的动态模型,因 而存在一定的误差; 三、模型的改进:随着人民的生活水平的提高和医疗卫生的改善,各年龄的死亡率不断下降,存活率 不断提高。因此我们可以对Leslie模型进行进一步改变:记,时段/年龄组中女性所占的百分比为K (j),并设为育龄女性的年龄组,则j时i段新生儿为N(0, j +1) = £ 气(j)K (j)N(i, j)N(i, j +1) = 5. 1N(i -1, j),i = 1,我们引入控制变量h(i, j),使得七(j) = P *h(i, j)h(i, j)称为女性生育模式,我们将lestie矩阵变£ h(i, j)=1,这里 = 15,i = 49,i=i 1成:N+1 = A( j) + B (j )* %0 0w =寸;其中B(j)=00.b '(j)Sm 3 0b, '(j)2.0.0.0b( j) = P (j)h(i, j)K (j)在一定时期内s (j)(这里'j从0到90), p为平均生育胎数,h(i, j)和K (j)可视为 与j无关的常数,我们可以通过控制结婚年龄和生育两胎间的年龄差来求h(ij)的最佳 值,从而达到控制人口数量和年龄结构的目的。四、模型的推广:本文首先不考虑年龄结构对人口增长的影响,建立Logist