欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    平面向量数量积的坐标表示模.ppt

    • 资源ID:4882393       资源大小:257.50KB        全文页数:22页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面向量数量积的坐标表示模.ppt

    2.4.2 平面向量数量积的 坐标表示、模、夹角,2、数量积的定义:,1、向量夹角的定义:,4、数量积的几何意义:,3、投影:,一.复习回顾,5、数量积的重要性质,特别地,,(判断两向量垂直的依据),平面向量的数量积,复习回顾,1、平面向量数量积的坐标表示如图,是x轴上的单位向量,是y轴上的单位向量,由于 所以,1,1,0,二.新课教学,平面两向量数量积的坐标表示,故两个向量的数量积等于它们对应坐标的乘积的和。即,根据平面向量数量积的坐标表示,向量的数量积的运算可转化为向量的坐标运算。,2、向量的模和两点间的距离公式,平面向量数量积的坐标表示、模、夹角,例1,5,10,练习,(1)垂直,3、两向量垂直和平行的坐标表示,(2)平行,例2 已知A(1,2),B(2,3),C(-2,5),试判断ABC的形状,并给出证明.,C(-2,5),变式 在ABC中,=(2,3),=(1,k),且ABC的一个内角为直角,求k值.,当B=90时,=0,,=(1,k3),2(1)+3(k3)=0 k=,当C=90时,=0,,1+k(k3)=0 k=,综上所述,处理向量垂直问题,4、两向量夹角公式的坐标运算,A,巩固训练,平面向量数量积的坐标表示、模、夹角,小结,(1)设a=(x,y),则 或|a|=.,若设、则,(2)写出向量夹角公式的坐标式,向量平行和垂直的坐标表示式.,两个向量的数量积等于它们对应坐标的乘积的和,即,1.向量 则 的最大值,最小值分别是,4,0,课后作业,平面向量应用举例,平面几何的向量方法,平面几何中的向量方法,向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。,问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?,猜想:,1.长方形对角线的长度与两条邻边长度之间有何关系?,2.类比猜想,平行四边形有相似关系吗?,例1、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。求证:,解:设,则,分析:因为平行四边形对边平行且相等,故设 其它线段对应向量用它们表示。,你能总结一下利用向量法解决平面几何问题的基本思路吗?,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何元素。,用向量方法解决平面几何问题的“三步曲”:,

    注意事项

    本文(平面向量数量积的坐标表示模.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开