南通智能终端产品项目可行性研究报告.docx
南通智能终端产品项目可行性研究报告xx有限责任公司目录第一章 项目总论6一、 项目名称及建设性质6二、 项目承办单位6三、 项目定位及建设理由7四、 报告编制说明8五、 项目建设选址10六、 项目生产规模10七、 建筑物建设规模10八、 环境影响10九、 原辅材料及设备10十、 项目总投资及资金构成11十一、 资金筹措方案11十二、 项目预期经济效益规划目标12十三、 项目建设进度规划12第二章 市场分析15一、 人工智能相关芯片的市场规模15二、 人工智能相关芯片的市场规模21三、 面临的机遇与挑战27第三章 项目背景分析33一、 人工智能芯片行业未来发展趋势33二、 中国集成电路行业概况37三、 全球集成电路行业概况39四、 项目实施的必要性40第四章 项目投资主体概况41一、 公司基本信息41二、 公司简介41三、 公司竞争优势42四、 公司主要财务数据44五、 核心人员介绍45六、 经营宗旨46七、 公司发展规划47第五章 产品方案49一、 建设规模及主要建设内容49二、 产品规划方案及生产纲领49第六章 项目选址可行性分析51一、 项目选址原则51二、 建设区基本情况51三、 创新驱动发展57四、 社会经济发展目标58五、 产业发展方向61六、 项目选址综合评价66第七章 法人治理结构68一、 股东权利及义务68二、 董事72三、 高级管理人员78四、 监事80第八章 运营模式分析82一、 公司经营宗旨82二、 公司的目标、主要职责82三、 各部门职责及权限83四、 财务会计制度87第九章 SWOT分析说明92一、 优势分析(S)92二、 劣势分析(W)94三、 机会分析(O)94四、 威胁分析(T)95第十章 进度实施计划99一、 项目进度安排99二、 项目实施保障措施100第十一章 环境保护方案101一、 环境保护综述101二、 建设期大气环境影响分析102三、 建设期水环境影响分析106四、 建设期固体废弃物环境影响分析106五、 建设期声环境影响分析107六、 营运期环境影响107七、 环境影响综合评价108第十二章 风险分析109一、 项目风险分析109二、 项目风险对策111第十三章 总结113第十四章 附表附录115本报告基于可信的公开资料,参考行业研究模型,旨在对项目进行合理的逻辑分析研究。本报告仅作为投资参考或作为参考范文模板用途。第一章 项目总论一、 项目名称及建设性质(一)项目名称南通智能终端产品项目(二)项目建设性质本项目属于扩建项目二、 项目承办单位(一)项目承办单位名称xx有限责任公司(二)项目联系人邹xx(三)项目建设单位概况本公司秉承“顾客至上,锐意进取”的经营理念,坚持“客户第一”的原则为广大客户提供优质的服务。公司坚持“责任+爱心”的服务理念,将诚信经营、诚信服务作为企业立世之本,在服务社会、方便大众中赢得信誉、赢得市场。“满足社会和业主的需要,是我们不懈的追求”的企业观念,面对经济发展步入快车道的良好机遇,正以高昂的热情投身于建设宏伟大业。面对宏观经济增速放缓、结构调整的新常态,公司在企业法人治理机构、企业文化、质量管理体系等方面着力探索,提升企业综合实力,配合产业供给侧结构改革。同时,公司注重履行社会责任所带来的发展机遇,积极践行“责任、人本、和谐、感恩”的核心价值观。多年来,公司一直坚持坚持以诚信经营来赢得信任。公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界,对服务区域经济与社会发展做出了突出贡献。 展望未来,公司将围绕企业发展目标的实现,在“梦想、责任、忠诚、一流”核心价值观的指引下,围绕业务体系、管控体系和人才队伍体系重塑,推动体制机制改革和管理及业务模式的创新,加强团队能力建设,提升核心竞争力,努力把公司打造成为国内一流的供应链管理平台。三、 项目定位及建设理由国际市场上主流的集成电路公司大都经历了数十年以上的发展。尽管我国政府已加大对集成电路产业的重视,但由于国内企业资金实力相对不足、技术发展存在滞后性,与国外领先企业依然存在技术差距,尤其是CPU、GPU等基础核心芯片的设计能力还存在显著不足。因此,我国集成电路产业环境有待进一步完善,整体研发实力、创新能力仍有待提升。“十三五”时期,我们必须以全球的视野、战略的眼光,增强战略自信,保持战略定力,用好战略机遇,以更加积极的姿态,攻坚克难、奋发有为,着力在优化结构、增强动力、化解矛盾、补齐短板上取得突破性进展,加快形成发展和竞争新优势,实现更高质量、更有效率、更加公平、更可持续的发展,实现“迈上新台阶、建设新南通”的发展目标。四、 报告编制说明(一)报告编制依据1、中华人民共和国国民经济和社会发展“十三五”规划纲要;2、建设项目经济评价方法与参数及使用手册(第三版);3、工业可行性研究编制手册;4、现代财务会计;5、工业投资项目评价与决策;6、国家及地方有关政策、法规、规划;7、项目建设地总体规划及控制性详规;8、项目建设单位提供的有关材料及相关数据;9、国家公布的相关设备及施工标准。(二)报告编制原则1、所选择的工艺技术应先进、适用、可靠,保证项目投产后,能安全、稳定、长周期、连续运行。2、所选择的设备和材料必须可靠,并注意解决好超限设备的制造和运输问题。3、充分依托现有社会公共设施,以降低投资,加快项目建设进度。4、贯彻主体工程与环境保护、劳动安全和工业卫生、消防同时设计、同时建设、同时投产。5、消防、卫生及安全设施的设置必须贯彻国家关于环境保护、劳动安全的法规和要求,符合行业相关标准。6、所选择的产品方案和技术方案应是优化的方案,以最大程度减少投资,提高项目经济效益和抗风险能力。科学论证项目的技术可靠性、项目的经济性,实事求是地作出研究结论。(二) 报告主要内容本报告对项目建设的背景及概况、市场需求预测和建设的必要性、建设条件、工程技术方案、项目的组织管理和劳动定员、项目实施计划、环境保护与消防安全、项目招投标方案、投资估算与资金筹措、效益评价等方面进行综合研究和分析,为有关部门对工程项目决策和建设提供可靠和准确的依据。五、 项目建设选址本期项目选址位于xx(以最终选址方案为准),占地面积约43.00亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。六、 项目生产规模项目建成后,形成年产xxx套智能终端产品的生产能力。七、 建筑物建设规模本期项目建筑面积49159.90,其中:生产工程31298.01,仓储工程9890.57,行政办公及生活服务设施4870.89,公共工程3100.43。八、 环境影响本项目选址合理,符合相关规划和产业政策,通过采取有效的污染防治措施,污染物可做到达标排放,对周边环境的影响在可承受范围内,因此,在切实落实评价提出的污染控制措施和严格执行“三同时”制度的基础上,从环境影响的角度,本项目的建设是可行的。九、 原辅材料及设备(一)项目主要原辅材料该项目主要原辅材料包括硅片、磷纸、石英杆舟、电子清洗液、哈摩粉、异丙醇、硅单晶片、预扩石英管、主扩SIC管、热电偶、高纯洗净剂、高纯液态磷源、抛光液。(二)主要设备主要设备包括:引线框架、铜丝、塑封料、盐酸、硫酸、甲基磺酸、锡球。十、 项目总投资及资金构成(一)项目总投资构成分析本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资21672.19万元,其中:建设投资16239.58万元,占项目总投资的74.93%;建设期利息416.29万元,占项目总投资的1.92%;流动资金5016.32万元,占项目总投资的23.15%。(二)建设投资构成本期项目建设投资16239.58万元,包括工程费用、工程建设其他费用和预备费,其中:工程费用14032.95万元,工程建设其他费用1801.65万元,预备费404.98万元。十一、 资金筹措方案本期项目总投资21672.19万元,其中申请银行长期贷款8495.67万元,其余部分由企业自筹。十二、 项目预期经济效益规划目标(一)经济效益目标值(正常经营年份)1、营业收入(SP):47600.00万元。2、综合总成本费用(TC):36243.74万元。3、净利润(NP):8323.81万元。(二)经济效益评价目标1、全部投资回收期(Pt):5.17年。2、财务内部收益率:30.58%。3、财务净现值:16904.21万元。十三、 项目建设进度规划本期项目按照国家基本建设程序的有关法规和实施指南要求进行建设,本期项目建设期限规划24个月。十四、项目综合评价该项目符合国家有关政策,建设有着较好的社会效益,建设单位为此做了大量工作,建议各有关部门给予大力支持,使其早日建成发挥效益。表格题目主要经济指标一览表序号项目单位指标备注1占地面积28667.00约43.00亩1.1总建筑面积49159.901.2基底面积17486.871.3投资强度万元/亩362.752总投资万元21672.192.1建设投资万元16239.582.1.1工程费用万元14032.952.1.2其他费用万元1801.652.1.3预备费万元404.982.2建设期利息万元416.292.3流动资金万元5016.323资金筹措万元21672.193.1自筹资金万元13176.523.2银行贷款万元8495.674营业收入万元47600.00正常运营年份5总成本费用万元36243.74""6利润总额万元11098.42""7净利润万元8323.81""8所得税万元2774.61""9增值税万元2148.71""10税金及附加万元257.84""11纳税总额万元5181.16""12工业增加值万元17088.95""13盈亏平衡点万元15295.98产值14回收期年5.1715内部收益率30.58%所得税后16财务净现值万元16904.21所得税后第二章 市场分析一、 人工智能相关芯片的市场规模1、全球市场规模(1)终端场景对人工智能芯片的需求采用专门为人工智能领域设计的处理器支撑人工智能应用是行业发展的必然趋势。理论上,利用终端中原有的通用CPU运行人工智能算法,也可在功能上实现相关应用。但对实时性要求高的场景(如智能驾驶等),对响应的延时极为敏感,基于CPU作人工智能计算远不能满足实时性要求,必须引入专门的人工智能处理器;而在手机、平板电脑、音箱、AR/VR眼镜、机器人等对散热、能耗敏感的消费类电子终端场景,采用CPU支撑人工智能算法,不仅性能不理想,计算的能耗亦不能满足相关场景下的苛刻限制,同样需要采用专门的人工智能处理器提升性能降低能耗。智能手机经过多年硬件升级,屏幕、摄像头、机身材料等组件进一步提升空间有限,应用升级尤其是人工智能技术的应用成为助推智能手机发展的重要因素。人工智能相关应用虽然可以在传统的手机处理器芯片上运行,但在流畅度和能耗方面表现不够理想而且用户体验不佳,引入人工智能处理器增加手机芯片的运算能力逐渐成为主流。各大领先智能终端品牌厂商相继推出搭载人工智能处理器的新款智能手机产品,提升了用户使用人工智能应用时的用户体验,促进了集成智能处理器的手机芯片的普及和推广。根据Gartner预测,搭载人工智能应用的智能手机出货量占比将从2017年的不到10%提升到2022年的80%,年销量超13亿部,带动终端人工智能芯片迎来高速增长。在消费电子行业中,除了智能手机之外,AR/VR、智能音箱、无人机、机器人等领域也是各厂商关注的重点,此类硬件终端均可与人工智能应用相结合,人工智能芯片的应用将加速推动下游消费电子行业的技术进步和产品体验优化。根据Gartner的预测,2020年人工智能芯片在消费电子终端市场的销售规模将超过25亿美元。智能驾驶是集导航、环境感知、控制与决策、交互等多项功能于一体的综合汽车智能系统,也是人工智能的重要应用领域之一。传统汽车主要由机械部件组成,集成电路应用占比较低,汽车电子功能相对简单,在结构和性能的改善中主要起到辅助机械装置的作用;智能汽车能够为用户提供自动驾驶、影音娱乐、车辆互联等多样化服务,实现车辆行驶过程中完全自动化与智能化。据市场调研机构iiMediaResearch估计,2016年全球智能驾驶汽车市场规模为40.0亿美元,预计至2021年增长至70.3亿美元,复合增长率11.94%。智能驾驶系统的核心是芯片,汽车的新能源化和互联化进程必将要求底层硬件能够支撑高速运算的同时保持低功耗与逻辑控制,未来人工智能芯片在车载领域具备广阔的市场空间。(2)云端场景对人工智能芯片的需求近年来,集成电路行业在经历了手机及消费电子驱动的周期后,迎来了数据中心引领发展的阶段,对于海量数据进行计算和处理将成为带动集成电路行业发展的新动能。大规模张量运算、矩阵运算是人工智能在计算层面的突出需求,高并行度的深度学习算法在视觉、语音和自然语言等方向上的广泛应用使得计算能力需求呈现指数型增长趋势。根据Cisco的预计,2016年至2021年全球数据中心负载任务量将成长近三倍,从2016年的不到250万个负载任务量增长到2021年的近570万个负载任务量。人工智能算法的不断普及和应用,和高性能计算能力的需求增长导致全球范围内数据中心对于计算加速硬件的需求不断上升。Intel作为传统CPU芯片厂商,较早地实现了数据中心产品的大规模销售,收入由2015年的159.8亿美元增长到2019年的234.8亿美元,年均复合增长率为10.10%。作为GPU领域的代表性企业,Nvidia数据中心业务收入在2015年仅为3.4亿美元,自2016年起,Nvidia数据中心业务增长迅速,以72.23%的年均复合增长率实现了2019年29.8亿美元的收入,其增速远远超过了Nvidia其他板块业务的收入。Intel和Nvidia数据中心业务收入的快速增长体现了下游数据中心市场对于泛人工智能类芯片的旺盛需求。根据IDC报告显示,云端推理和训练所产生的云端智能芯片市场需求,预计将从2017年的26亿美元增长到2022年的136亿美元,年均复合增长率39.22%。(3)边缘端场景对人工智能芯片的需求云端受限于延时性和安全性,不能满足部分对数据安全性和系统及时性要求较高的用户需求。这些用户的需求推动大量数据存储向边缘端转移。边缘计算是5G网络架构中的核心环节,在运营商边缘机房智能化改造的大背景下,能够解决5G网络对于低时延、高带宽、海量物联的部分要求,是运营商智能化战略的重要组成部分。边缘计算可以大幅提升生产效率,是智能制造的重要技术基础。根据Gartner预测,未来物联网将约有10%的数据需要在网络边缘进行存储和分析,按照这一比例进行推测,2020年全球边缘计算的市场需求将达到411.40亿美元。边缘计算将在未来3-5年创造海量硬件价值,为大量行业创造新的机遇。与云端智能芯片相比,边缘智能芯片的使用场景更加丰富,同时单芯片售价并不昂贵。同时,在整个边缘计算市场的带动下,边缘智能芯片逐渐受到国内外芯片厂商的关注。根据ABIResearch预计,边缘智能芯片市场规模将从2019年的26亿美元增长到2024年的76亿美元。综合以上各方面来看,人工智能的各类应用场景,从云端溢出到边缘端,或下沉到终端,都离不开智能芯片对于“训练”与“推理”任务的高效支撑。当前人工智能应用越来越强调云、边、端的多方协同,对于芯片厂商而言,仅仅提供某一类应用场景的人工智能芯片是难以满足用户的需求。因此,各芯片厂商的多样化布局与竞争将促使整个人工智能芯片行业在未来几年实现高速发展。根据市场调研公司Tractica的研究报告,人工智能芯片的市场规模将由2018年的51亿美元增长到2025年的726亿美元,年均复合增长率将达到46.14%。2、国内市场规模在经历了互联网和移动互联网的追赶之后,中国正成为一个重要的数据大国,IDC预计到2025年中国将拥有全球数据量的27.8%。另外,“中国制造2025”、“数字中国”等产业政策推动中国产业的信息化、智能化升级转型。这为我国人工智能芯片的发展提供了众多实际的应用场景。与全球市场相似,中国人工智能芯片市场主要分为终端、云端和边缘端。在终端,近年来,在全球智能手机出货量增速放缓的情况下,国产品牌手机销量强势上涨,与苹果、三星等国外终端厂商的市场份额逐渐缩小。人工智能的发展和通信网络的升级推进着中国互联网的演变,同时也推动着智能终端的更新迭代。根据IDC对中国智能终端市场发展的预测,到2022年,40%的智能终端产品将拥有人工智能的相关功能。在国内头部智能终端厂商的带领下,人工智能芯片将成为智能手机等终端的标配,预计人工智能芯片在终端的应用将进入一个全新的普及阶段,渗透率将逐年提升。在云端,服务器及数据中心需要对大量原始数据进行运算处理,对于芯片等基础硬件的计算能力、计算进度、数据存储和带宽等都有较高要求。传统数据中心存在着能耗较高、计算效率较低等诸多发展瓶颈,因此数据中心中服务器的智能化将是未来发展趋势。根据IDC数据,2018年中国智能服务器市场规模为13.05亿美金(约合人民币90亿元),同比增长131%,到2023年将达到43.26亿美金(约合人民币300亿元),整体市场年均复合增长率将达到27.08%。按照人工智能芯片占到人工智能服务器成本的30%-35%进行测算,未来中国服务器市场对于人工智能芯片的需求有望突破100亿元人民币。在边缘端,随着中国5G的快速商用落地,5G产业的各项配套产业将迎来快速发展的契机,车联网、工业互联网、物联网等应用行业将逐步进入发展的新阶段。根据赛迪顾问预测,到2022年中国边缘计算市场规模将达到325.31亿元。放眼全球,人工智能领域的应用目前均处于技术和需求融合的高速发展阶段,未形成统一的生态,就人工智能芯片这一细分领域而言,国内芯片厂商与国外芯片巨头基本处于相似的发展阶段。而随着人工智能相关技术的进步,应用场景将更加多元化,中国人工智能芯片市场将得到进一步的发展。未来几年内,中国人工智能芯片市场规模将保持40%-50%的增长速度,到2024年,市场规模将达到785亿元。二、 人工智能相关芯片的市场规模1、全球市场规模(1)终端场景对人工智能芯片的需求采用专门为人工智能领域设计的处理器支撑人工智能应用是行业发展的必然趋势。理论上,利用终端中原有的通用CPU运行人工智能算法,也可在功能上实现相关应用。但对实时性要求高的场景(如智能驾驶等),对响应的延时极为敏感,基于CPU作人工智能计算远不能满足实时性要求,必须引入专门的人工智能处理器;而在手机、平板电脑、音箱、AR/VR眼镜、机器人等对散热、能耗敏感的消费类电子终端场景,采用CPU支撑人工智能算法,不仅性能不理想,计算的能耗亦不能满足相关场景下的苛刻限制,同样需要采用专门的人工智能处理器提升性能降低能耗。智能手机经过多年硬件升级,屏幕、摄像头、机身材料等组件进一步提升空间有限,应用升级尤其是人工智能技术的应用成为助推智能手机发展的重要因素。人工智能相关应用虽然可以在传统的手机处理器芯片上运行,但在流畅度和能耗方面表现不够理想而且用户体验不佳,引入人工智能处理器增加手机芯片的运算能力逐渐成为主流。各大领先智能终端品牌厂商相继推出搭载人工智能处理器的新款智能手机产品,提升了用户使用人工智能应用时的用户体验,促进了集成智能处理器的手机芯片的普及和推广。根据Gartner预测,搭载人工智能应用的智能手机出货量占比将从2017年的不到10%提升到2022年的80%,年销量超13亿部,带动终端人工智能芯片迎来高速增长。在消费电子行业中,除了智能手机之外,AR/VR、智能音箱、无人机、机器人等领域也是各厂商关注的重点,此类硬件终端均可与人工智能应用相结合,人工智能芯片的应用将加速推动下游消费电子行业的技术进步和产品体验优化。根据Gartner的预测,2020年人工智能芯片在消费电子终端市场的销售规模将超过25亿美元。智能驾驶是集导航、环境感知、控制与决策、交互等多项功能于一体的综合汽车智能系统,也是人工智能的重要应用领域之一。传统汽车主要由机械部件组成,集成电路应用占比较低,汽车电子功能相对简单,在结构和性能的改善中主要起到辅助机械装置的作用;智能汽车能够为用户提供自动驾驶、影音娱乐、车辆互联等多样化服务,实现车辆行驶过程中完全自动化与智能化。据市场调研机构iiMediaResearch估计,2016年全球智能驾驶汽车市场规模为40.0亿美元,预计至2021年增长至70.3亿美元,复合增长率11.94%。智能驾驶系统的核心是芯片,汽车的新能源化和互联化进程必将要求底层硬件能够支撑高速运算的同时保持低功耗与逻辑控制,未来人工智能芯片在车载领域具备广阔的市场空间。(2)云端场景对人工智能芯片的需求近年来,集成电路行业在经历了手机及消费电子驱动的周期后,迎来了数据中心引领发展的阶段,对于海量数据进行计算和处理将成为带动集成电路行业发展的新动能。大规模张量运算、矩阵运算是人工智能在计算层面的突出需求,高并行度的深度学习算法在视觉、语音和自然语言等方向上的广泛应用使得计算能力需求呈现指数型增长趋势。根据Cisco的预计,2016年至2021年全球数据中心负载任务量将成长近三倍,从2016年的不到250万个负载任务量增长到2021年的近570万个负载任务量。人工智能算法的不断普及和应用,和高性能计算能力的需求增长导致全球范围内数据中心对于计算加速硬件的需求不断上升。Intel作为传统CPU芯片厂商,较早地实现了数据中心产品的大规模销售,收入由2015年的159.8亿美元增长到2019年的234.8亿美元,年均复合增长率为10.10%。作为GPU领域的代表性企业,Nvidia数据中心业务收入在2015年仅为3.4亿美元,自2016年起,Nvidia数据中心业务增长迅速,以72.23%的年均复合增长率实现了2019年29.8亿美元的收入,其增速远远超过了Nvidia其他板块业务的收入。Intel和Nvidia数据中心业务收入的快速增长体现了下游数据中心市场对于泛人工智能类芯片的旺盛需求。根据IDC报告显示,云端推理和训练所产生的云端智能芯片市场需求,预计将从2017年的26亿美元增长到2022年的136亿美元,年均复合增长率39.22%。(3)边缘端场景对人工智能芯片的需求云端受限于延时性和安全性,不能满足部分对数据安全性和系统及时性要求较高的用户需求。这些用户的需求推动大量数据存储向边缘端转移。边缘计算是5G网络架构中的核心环节,在运营商边缘机房智能化改造的大背景下,能够解决5G网络对于低时延、高带宽、海量物联的部分要求,是运营商智能化战略的重要组成部分。边缘计算可以大幅提升生产效率,是智能制造的重要技术基础。根据Gartner预测,未来物联网将约有10%的数据需要在网络边缘进行存储和分析,按照这一比例进行推测,2020年全球边缘计算的市场需求将达到411.40亿美元。边缘计算将在未来3-5年创造海量硬件价值,为大量行业创造新的机遇。与云端智能芯片相比,边缘智能芯片的使用场景更加丰富,同时单芯片售价并不昂贵。同时,在整个边缘计算市场的带动下,边缘智能芯片逐渐受到国内外芯片厂商的关注。根据ABIResearch预计,边缘智能芯片市场规模将从2019年的26亿美元增长到2024年的76亿美元。综合以上各方面来看,人工智能的各类应用场景,从云端溢出到边缘端,或下沉到终端,都离不开智能芯片对于“训练”与“推理”任务的高效支撑。当前人工智能应用越来越强调云、边、端的多方协同,对于芯片厂商而言,仅仅提供某一类应用场景的人工智能芯片是难以满足用户的需求。因此,各芯片厂商的多样化布局与竞争将促使整个人工智能芯片行业在未来几年实现高速发展。根据市场调研公司Tractica的研究报告,人工智能芯片的市场规模将由2018年的51亿美元增长到2025年的726亿美元,年均复合增长率将达到46.14%。2、国内市场规模在经历了互联网和移动互联网的追赶之后,中国正成为一个重要的数据大国,IDC预计到2025年中国将拥有全球数据量的27.8%。另外,“中国制造2025”、“数字中国”等产业政策推动中国产业的信息化、智能化升级转型。这为我国人工智能芯片的发展提供了众多实际的应用场景。与全球市场相似,中国人工智能芯片市场主要分为终端、云端和边缘端。在终端,近年来,在全球智能手机出货量增速放缓的情况下,国产品牌手机销量强势上涨,与苹果、三星等国外终端厂商的市场份额逐渐缩小。人工智能的发展和通信网络的升级推进着中国互联网的演变,同时也推动着智能终端的更新迭代。根据IDC对中国智能终端市场发展的预测,到2022年,40%的智能终端产品将拥有人工智能的相关功能。在国内头部智能终端厂商的带领下,人工智能芯片将成为智能手机等终端的标配,预计人工智能芯片在终端的应用将进入一个全新的普及阶段,渗透率将逐年提升。在云端,服务器及数据中心需要对大量原始数据进行运算处理,对于芯片等基础硬件的计算能力、计算进度、数据存储和带宽等都有较高要求。传统数据中心存在着能耗较高、计算效率较低等诸多发展瓶颈,因此数据中心中服务器的智能化将是未来发展趋势。根据IDC数据,2018年中国智能服务器市场规模为13.05亿美金(约合人民币90亿元),同比增长131%,到2023年将达到43.26亿美金(约合人民币300亿元),整体市场年均复合增长率将达到27.08%。按照人工智能芯片占到人工智能服务器成本的30%-35%进行测算,未来中国服务器市场对于人工智能芯片的需求有望突破100亿元人民币。在边缘端,随着中国5G的快速商用落地,5G产业的各项配套产业将迎来快速发展的契机,车联网、工业互联网、物联网等应用行业将逐步进入发展的新阶段。根据赛迪顾问预测,到2022年中国边缘计算市场规模将达到325.31亿元。放眼全球,人工智能领域的应用目前均处于技术和需求融合的高速发展阶段,未形成统一的生态,就人工智能芯片这一细分领域而言,国内芯片厂商与国外芯片巨头基本处于相似的发展阶段。而随着人工智能相关技术的进步,应用场景将更加多元化,中国人工智能芯片市场将得到进一步的发展。未来几年内,中国人工智能芯片市场规模将保持40%-50%的增长速度,到2024年,市场规模将达到785亿元。三、 面临的机遇与挑战1、行业机遇(1)国家政策大力扶持人工智能和集成电路产业发展我国一直大力支持人工智能和集成电路产业的发展。2014年,工信部发布国家集成电路产业发展推进纲要,提出到2020年,集成电路产业与国际先进水平的差距逐步缩小,全行业销售收入年均增速超过20%,企业可持续发展能力大幅增强。2016年,国务院印发关于印发“十三五”国家科技创新规划的通知(国发201643号),将“核高基”、集成电路装备等列为国家科技重大专项,发展关键核心技术,着力解决制约经济社会发展和事关国家安全的重大科技问题。2017年,国务院公布新一代人工智能发展规划,提出抢抓人工智能发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。近年以来,国家和各级地方政府不断通过产业政策、税收优惠政策、成立产业基金等方式支持人工智能和集成电路产业发展,有望带动行业技术水平和市场需求不断提升。(2)新一代信息技术孕育了新的市场机会随着云计算、物联网、5G通信、人工智能等新技术的不断成熟,消费电子、视频处理、汽车电子等集成电路主要下游产业的产业升级速度不断加快,正处于高速发展的通道。下游市场的产业升级强劲带动了集成电路企业的增长。如人工智能模型的计算量持续增长,刺激了智能芯片的市场需求;汽车电子领域,相比于传统汽车,新能源汽车需要用到更多传感器与制动集成电路,就单车集成电路价值而言,新能源汽车将达到传统汽车的两倍;在物联网领域,根据Gartner的预测,全球联网设备将从2014年的37.5亿台上升到2020年的250亿台,将形成超过3,000亿美元的市场规模,其中MCU、通信芯片和传感芯片三项占整体成本的比例高达60%-70%。随着新一代信息技术的高速发展,新兴科技产业将成为集成电路行业新的市场拉动力,并且随着国内高科技企业技术研发实力的不断增强,国内集成电路行业将会迎来发展的新契机。(3)集成电路产业重心转移促进产业链整体发展集成电路行业目前呈现专业分工深度细化、细分领域高度集中的特点。从历史进程看,全球半导体行业已经完成两次的半导体产业转移:第一次是20世纪70年代从美国转向日本,第二次是20世纪80年代半导体产业转向韩国与中国台湾。目前全球半导体行业正经历第三次产业转移,世界集成电路产业逐渐向中国大陆转移。产业转移是市场需求、国家产业政策和资本驱动的综合结果。全球半导体产业历史上两次成功的转移都带来了产业发展方向的改变、分工方式的纵化、资源的重新配置,并给予了新参与者切入市场的机会,进而推动整个行业的革新与发展。目前,中国拥有全球最大且增速最快的集成电路消费市场。2018年,中国半导体产业产值达6,532亿元,比上年增长20.7%。巨大的下游市场配合积极的国家产业政策与活跃的社会资本,正在全方位、多角度地支持国内半导体行业发展。在这一趋势带动下,芯片制造业厂商如台积电、格罗方德、日月光等纷纷在大陆投资建厂和扩张生产线,下游晶圆加工工艺持续改进,国内封装测试企业技术水平达到国际先进水平,为集成电路设计企业提供了充足的产能基础,可以支撑具有先进性的各类人工智能芯片的生产制造。(4)稳步增长的市场需求持续推动人工智能芯片发展集成电路产品的下游应用领域十分广泛,包括消费电子、汽车电子、工业控制、网络设备、移动通信等等,下游广阔的应用领域稳定支撑着集成电路设计行业的持续发展。随着人工智能算法的推广应用,云端服务器越来越多地被用于模型“训练”和“推理”任务,导致了对于大量云端训练芯片和推理芯片的市场需求。同时,随着终端向便携化、智能化、网络化方向发展,以及人工智能、云计算、智能家居、可穿戴设备、物联网等为代表的新兴产业崛起,边缘计算的需求逐步提升,催生大量边缘智能芯片的需求。人工智能逐步成为推动集成电路产业发展的新动力,为集成电路设计企业带来新的发展机遇。(5)人工智能应用兴起给新兴芯片设计企业带来了发展机遇历史上,每一次新的应用浪潮都会有新的巨头公司崛起,Intel与ARM即分别抓住了个人电脑和移动终端两次行业变革式的发展。当前人工智能应用的兴起,则对处理器芯片提出了新的设计架构要求,给芯片设计行业带来了新的发展机遇。在这次变革中,传统芯片企业和新兴芯片设计企业站在了同一起跑线上,两者各具优势,都面临着广阔的市场机遇。传统芯片龙头公司的优势体现在资金、资源和经验壁垒上,它们往往在设计、工艺和制造层面拥有较深厚的积淀,各环节资源储备和资金实力较强。传统芯片龙头公司也意识到了人工智能相关应用的巨大潜力,通过并购方式收购了大量新兴的人工智能芯片设计公司,例如Intel收购HabanaLabs、Nervana和Mobileye,Xilinx收购深鉴科技等。对于新兴人工智能芯片设计公司而言,这是一次崛起的好机会。新兴公司采用较为灵活的竞争策略,技术迭代时间短,产品研发时间快,更能够适应下游人工智能应用的不断升级。2、行业挑战(1)行业高端专业人才不足集成电路设计行业是典型的技术密集行业,企业的技术研发实力源于对专业人才的储备和培养。虽然近几年随着我国集成电路行业的发展,集成电路设计行业的从业人员逐步增多,但专业研发人才供不应求的情况依然普遍存在。而由于近几年市场对于集成电路设计人才的需求急剧增加,新进入企业聘用这些人才的成本已接近国际顶尖集成电路企业。未来一段时间,专业人才相对缺乏仍将成为制约行业发展的重要因素之一。(2)我国集成电路行业竞争力有待提升国际市场上主流的集成电路公司大都经历了数十年以上的发展。尽管我国政府已加大对集成电路产业的重视,但由于国内企业资金实力相对不足、技术发展存在滞后性,与国外领先企业依然存在技术差距,尤其是CPU、GPU等基础核心芯片的设计能力还存在显著不足。因此,我国集成电路产业环境有待进一步完善,整体研发实力、创新能力仍有待提升。(3)人工智能技术发展尚需逐步成熟随着处理器技术和智能算法的发展,近五年以来人工智能相关技术取得了明显的进步,应用场景不断扩展。目前,人工智能技术及应用场景更多体现在图像识别、语音识别等“感知智能”,自然语言处理等“认知智能”的应用场景尚处于较初级的阶段,人工智能相关技术发展仍需逐步成熟,难以在短期内看到大规模实际应用。第三章 项目背景分析一、 人工智能芯片行业未来发展趋势1、云计算、大数据、5G、IoT等新兴技术驱动云端智能芯片需求持续增长云计算分为IaaS(“云”的基础设施)、PaaS(“云”的操作系统)和SaaS(“云”的应用服务)三层。IaaS公司提供场外服务器、存储和网络硬件,IoT提供了更多的数据收集端口,大大提升了数据量。大数据为人工智能提供了信息来源,云计算为人工智能提供了物理载体,5G降低了数据传输和处理的延时性。人工智能关键技术未来将在5G、IoT、云计算和大数据等新兴技术日益成熟的背景下取得突破性进展。根据中国信息通信研究院的统计数据,2017年全球公有云市场规模为1,110亿美元,2018年增长到1,392亿美元,同比增速高达25.41%。到2021年预计全球公有云市场规模将达到2,461亿美元,未来全球公有云市场发展前景广阔。2018年IaaS市场规模达到437亿美元,同比2017年实现了34.05%的高速增长,云计算硬件市场空间巨大。云计算和人工智能算法关系密切,未来搭载智能芯片的云计算硬件比例将大幅提升,云端智能芯片需求持续增长。2、5G时代,边缘智能芯片需求将迅速增长在5G时代,无线网络具备高带宽、低延时以及支持海量设备接入等特点,大规模的数据流动增加了传输和云端的压力,使得边缘端的网络节点需要具备数据预处理和快速输出结果的能力,数据处理将进入分布式计算的新时代。同时,随着5G时代和人工智能的发展,越来越多的数据处理需求必须在边缘