is毕业论文设计34m 复合材料风力发电机组叶片屈曲有限元分析19582.doc
专业好文档34m复合材料风力发电机组叶片屈曲有限元分析* 李成友 周光明 黄再兴/南京航空航天大学 田卫国/中航(保定)惠腾风电设备有限公司 11摘要:采用有限元分析的方法解决了叶片的静强度和屈曲稳定性问题 。首先,阐述了利用MSC .Patran建立复合材料叶片的有限元模型的步骤和方法;其次,利用蔡-吴(E.M.Wu) 失效准则和Hill-蔡 ( S.W.Tsai) 强度理论校核了几种主要承力材料的强度;最后,结合有限元二阶屈曲模态计算结果,讨论了风机叶片结构的屈曲稳定性。 关键词:风力发电机;叶片;复合材料;有限元分析 中图分类号:TK83 文献标识码:B文章编号:1006-8155(2008)05-0040-07Finite Element Analysis of Buckling in the 34m Composite Material Wind Turbine Blades Abstract: The aim of this paper is to investigate the static strength and buckling stability of the 34m composite wind turbine blades (CWTBs). Because the geometric shape and boundary of the wind turbine blades are complicated, the finite element method is used to analyze this problem. First, based on the MSC.Patran, the procedures of the finite element modeling for the CWTBs are discussed. Next, the strength of main materials in CWTB is checked with the E.M.Wu failure criterion and S.W. Tsai strength theory. Finally, the buckling stability of the CWTBs is discussed on the basis of calculation for two-order buckling mode of CWTBs. Key words: wind turbine; blade; composite material; finite element analysis 0 引言随着世界能源危机的日益严重,以及公众对于改善生态环境要求的呼声日益高涨,风能作为一种清洁的可再生能源日益受到各国的重视1。风力发电具有无污染、安装运行简单、操作维护成本低等优点,但是其最大缺点是风的间歇性,导致风力发电不稳定。因此需要用可靠的和高效的设备在风力较强的有限时间内最大限度地获得风能2。叶片是风力发电机最重要的部件。为了最大限度地利用风能,叶片外形根据空气动力学原理设计而成,为了满足叶片质量轻、刚度大、强度高和耐疲劳等特性,叶片主体部分由复合材料制作而成2。风电转换过程首先从叶片开始,叶片的性能直接关系到风力发电系统的性能。各国风力发电系统的运行实践表明,叶片是最容易出现故障的部位3。叶片结构发生破坏的两种形式:材料强度不够和结构屈曲4。所以,对叶片进行强度分析和屈曲分析意义重大。本文借助于有限元工具,从材料强度和结构屈曲两个方面去研究叶片的性能。目的是确定叶片应力应变分布规律,找出危险点,对危险点处的几种材料进行强度校核。进而计算叶片的二阶屈曲模态,获得屈曲载荷,验证叶片是否满足屈曲强度要求。同时,确定结构容易发生屈曲的危险位置。本文采用商用软件MSC.Patran和MSC.Nastran,其中MSC.Nastran中屈曲分析包括线性屈曲和非线性屈曲分析,在算法上,MSC.Nastran采用先进的微分刚度概念,考虑高阶应变位移关系,结合MSC.Nastran特征值抽取算法可精确地判断出相应的失稳临界点5。1 有限元模型1.1 几何模型和网格划分 叶片由两部分组成:蒙皮和主梁。蒙皮是将气流转换成叶片转动所需压力的主要部件。它的设计是基于空气动力学原理,不同的横截面呈现不同的翼型,并有一定的扭转角,叶片的整体外形自叶根到叶尖大致呈锥形(见图1)。_*基金项目:航空科学基金资助项目(04B52010)收稿日期:2008-01-07 南京市 210016主梁是叶片承受载荷的主要部件。蒙皮仅承受总载荷的20%,而其他部分由主梁承担。主梁的横截面呈盒状。图 1 叶片立体几何模型:蒙皮和主梁 图 2 带边界条件和载荷的叶片有限单元模型叶片的主要外形参数见表1。 表1 叶片主要技术参数额定功率/ kW1500 叶片长度/ m34.23 叶片最大弦长/ mm3100 叶片扭角/(°)13叶片质量/ kg5896.7重心位置(距叶根)/ m10.591 叶片的初始资料仅有各个截面的二维工程图,三维模型的建立首先利用CATIA V5平台依据各个截面的轮廓线建立模型框架,然后将这个框架传输到有限元前置处理软件PATRAN中,通过截面放样生成叶片的曲面造型。网格的划分采用三角形单元,三角形单元可以较好地适应复杂的几何边界条件,有利于从几何上去逼近一个任意双曲度的壳体。在单元数目的选取上进行了多次尝试,实践表明:单元数目的选取有一个最佳范围,小于这个范围,求解精度不够,超过这个范围,对结果精度的提高则很有限,反而会影响求解速度。通过多次试算选取单元数目为18797。这个数目既能保证求解问题的精度,又不影响求解速度。1.2 材料和单元属性的定义叶片的材料主要有:EWFC1050,EZF800,1#布,EWR300和PVC泡沫,其中PVC泡沫的强度与弹性模量相对其他材料很小,考虑PVC泡沫是为了保证结构的几何形状。材料参数见表2。由于复合材料层合壳结构的厚度与长度、宽度比足够小(1/10),可以将结构简化为板单元。叶片是由玻璃纤维以不同的铺设角铺设而成,因此,可将叶片视为层合板模型。即由相同的单向板以不同的角度铺设而成,首先,定义单向板各个方向的参数(见图3),单向板使用玻璃纤维作为增强材料,环氧树脂作为基体,E11为纤维轴向方向,E22为垂直于纤维轴线方向(即横向),从其性能特点看出,该单向板是2D正交各向异性板,在Patran里定义单向板为2D Orthotropic材料。再用Laminate创建层合板模型,如图4所示,通过定义不同的方向角、不同的厚度、材料定义不同的铺层,将所定义的材料赋给有限元模型。表2 几种主要材料的参数表 牌号/GPa/GPaG/GPa厚度/mm1#布44.0910.940.2933.560.8EZF80012.38812.3880.4453.630.57EWR30021.5421.540.1132.110.26EWFC105016.9016.900.1033.771.0叶片的铺层情况复杂:沿叶片纵向分布不均,沿叶片横向也是不均匀的,这就给单元属性的赋值带来了很大的困难,采用分段分块定义层合板模型,然后再分段分块将模型赋给单元。这样最大限度地模拟了叶片铺层的真实情况(见图5)。图 3 单向板性能特点示意图 图 4 复合材料层合板(Laminate)的定义图 5 叶片单元属性分段分块效果图1.3 计算载荷风力机叶片所受的载荷类型是复杂多样的,是由风机运行条件以及外界条件综合确定的。运行工况和外界工况是采用单独统计的方法得到6。静强度计算仅考虑外界工况。外界工况分为正常工况和极端工况。计算所用载荷为25m/s极端阵风下的极端外界工况。表3给出了部分截面的25m/s极端阵风载荷分布情况,载荷由中航(保定)惠腾公司提供。表3 25m/s极端风载荷分布切面Mt/(kN·m)Mn/(kN·m)Fz/kN05098.26 1935.48 260.2714919.07 1854.59 249.9634678.47 1748.75 242.7454436.16 1645.12 236.2874192.57 1543.25 229.9293948.31 1442.50 223.05113704.72 1342.89 216.16153226.56 1150.21 201.55192767.13 969.14 185.35232332.47 802.01 168.08271928.21 650.59 149.92311558.35 515.63 131.03351224.43 397.05 111.4439928.37 294.96 91.0343670.88 208.97 70.10所给载荷为各截面上的弯矩,在一个壳体的轮廓线上定义弯矩,在有限元软件里不易实现,所以,需要对所给载荷进行等效处理。叶片国家标准将作用在单片叶片上的气动力假设为三角形线性载荷分布。思路:先假设一个分布力,进行计算,这样可以得出在这个分布力作用下的弯矩图,然后与给定弯矩进行比较,不断进行尝试,最终可以找到一个分布力的作用效果与给定的弯矩效果是一致的。下面是对25m/s风载的等效过程,以下所有计算只考虑大小,不考虑方向,方向会在有限元软件的载荷定义里考虑。(1)对的等效首先假设,根据公式:,可以得出: 根据边界条件:时,(有限元计算的结果)。 时, (假设时满足的条件)。得: , 所以得出 将给定的弯矩数值与通过上式算出的弯矩进行比较,图6给定的载荷与等效对比:系列1代表表3中数据拟合的弯矩图;系列2代表模拟的线性载荷加载后的弯矩 。从图中很明显看出:数值和趋势趋于一致。图 6 给定的载荷与等效对比(2)对的等效首先假设,根据公式:,可以得出:根据边界条件:时,(有限元计算的结果)。 时, (假设时满足的条件)。得: , 所以得出 将给定的弯矩数值与通过上式算出的弯矩进行比较,结果如图7所示:系列1代表表3中数据拟合的弯矩图;系列2代表模拟线性载荷加载后的弯矩效果图。从图7中很明显看出:效果虽然有一定差别,但是考虑到这个方向的载荷与方向相比很小。对整个结构的受载效果影响甚微。图7 给定的载荷与所用载荷对比(3) 对的等效首先假设,根据公式:,可以得出: 根据边界条件:当时,(有限元计算的结果)。得: 从而得到:将给定的弯矩数值与通过上式算出的弯矩进行比较,结果如图8所示:系列1代表给定的数据拟合的力的曲线;系列2代表所用的线性分布力加载作用后的效果。图 8 给定的力与线性分布力拟合的对比载荷处理过后,将处理后的载荷以分布力的形式加载在叶片气动面上。加载后的叶片效果如图9所示。图 9 加载后的有限元模型2 静力计算结果及材料强度校核2.1 静力计算结果图10为极限载荷下的位移云纹图,静载下叶尖最大位移为4.22m。图11为材料EWR300经向拉应力云纹图;图12为材料EWR300经向压应力云纹图;图13为材料EWR300纬向拉应力云纹图;图14为材料EWR300纬向压应力云纹图;图15为材料EWR300 方向上剪应力云纹图。图10图15以材料EWR300为例,从有限元计算结果中获得它的主方向的拉力、压力和剪应力数据,根据总体应力图判断出危险点,从5幅图中读出危险点处的拉压力和剪应力,根据这些数据进行材料的强度校核。图 10 叶片位移云纹图 图11 EWR300经向拉应力云纹图图 12 EWR300经向压应力云纹图 图 13 EWR300纬向拉应力云纹图图14 EWR300纬向压应力云纹图 图15 EWR300 方向上剪应力云纹图2.2 材料强度校核 风机叶片壳体各铺层均为正交各向异性材料,与各向同性材料相比,各向异性材料最大作用应力并不一定对应材料的危险状态,因此不能采用各向同性材料的强度理论。要准确判断正交各向异性材料的强度,应该根据材料主方向上的应力,通过蔡-吴(E.M.Wu)失效准则或Hill-蔡 ( S.W.Tsai) 强度理论判断材料强度。根据应力云纹图,读取应力数据,判断每一种材料的最危险点应力数值见表4。采用蔡吴张量理论和Hill-蔡理论校核材料强度,将表4中的数据代入蔡-吴(E.M.Wu)失效准则和Hill-蔡 ( S.W.Tsai) 强度理论,结果表明:1#布、EZF800和EWR300满足静强度设计要求。表4 各铺层的最危险点应力数值序号材料牌号受力类型/MPa/MPa/MPa11#布拉13417.97.3721#布压1414.111.93EZF800拉78.240.822.34EZF800压79.567.121.85EWR300拉2.571074.316EWR300压2.571004.673 屈曲分析屈曲分析是一种用于确定结构开始变得不稳定时的临界载荷和屈曲模态形状的技术。笔者采用的是经典的屈曲分析采用特征值屈曲分析法,它适用于对一个理想弹性结构的理想屈曲强度(歧点)进行预测,主要是使用特征值公式计算造成结构负刚度的应力刚度阵的比例因子。结构在达到屈曲载荷之前其位移变形曲线表现出线性关系,达到屈曲以后曲线将跟随另外的路径。发生转折的这一点称为分支点,分支点的载荷称为屈曲载荷,结构发生屈曲的不同形态成为屈曲模态。Nastran中特有的特征值抽取算法可以精确判断出临界失稳点,给出屈曲因子,曲屈因子是指屈曲载荷与计算工况载荷之比。Nastran可以根据需要算出N阶屈曲,最低阶曲屈载荷就是屈曲极限载荷。笔者根据叶片线性屈曲的前两阶模态来研究叶片的屈曲强度。图16为一阶屈曲立体位移云纹图;图17为一阶屈曲平面应力云纹图。一阶屈曲模态(屈曲因子Factor1=1.9163)。 图 16 一阶屈曲立体位移云纹图 图 17 一阶屈曲平面应力云纹图二阶屈曲模态(屈曲因子Factor2=1.9695)。 图 18 二阶屈曲立体位移云纹图 图 19 二阶屈曲平面应力云纹图屈曲载荷计算公式: 代表的是叶片所受到的实际载荷,它是所有作用在叶片上的载荷的综合效果。因为最低阶屈曲模态的屈曲因子Factor1=1.9163>1,即,说明屈曲载荷大于实际载荷,所以叶片结构在实际极限载荷作用下不发生屈曲,该叶片满足屈曲强度要求。如果载荷持续增加,达到或者是超过时,即载荷达到或者是超过屈曲载荷时,叶片结构发生局部屈曲,屈曲发生的位置位于距离叶根511m处。这一段的结构特点是:截面弦长比较长,前缘与前梁距离比较大,在空间上形成一个比较大的空腔结构,腔体上表面受到压力比较大,又缺少梁的有力支撑,所以这一段叶片发生屈曲的可能性就比较大。4 结论(1)本文采用的复合材料层合板壳模型易于模拟变厚度壳体,对于材料铺层情况很复杂的壳也具有很强的适应性,这个模型易于控制材料种类、铺层多少和铺层角度,可以根据实际铺层情况把复合材料层合板属性分段分块地赋给任意单元,这种做法最大的优点是能够最大限度的模拟风机叶片结构的真实情况;(2)通过对几种主要承力材料的强度校核,证明了该叶片材料强度满足极限载荷下的静强度要求,并且铺层设计也是很合理的;(3)对叶片进行屈曲强度校核的结果表明:该叶片具有良好的抗屈曲破坏能力,其屈曲强度满足设计要求。目前已经装机使用,取得了良好的效果,该项目研究过程中所形成的屈曲有限元分析的方法和经验可用于其它型号的叶片的屈曲强度分析和设计;(4)分析方法的不足之处在于:特征值屈曲分析的方法把工程结构看成是理想的弹性的结构,没有考虑初始缺陷和材料非线性、大变形等非线性因素的影响。参 考 文 献1 潘艺,周鹏展,王进风力发电机叶片技术发展概述J湖南工业大学学报,2007,25(3):48-512 Mahmood M.Shokrieh,Roham Rafiee,Simulation of fatigue failure in a full composite wind turbine blade, Composite Structures 2006,74 :332-3423 杨昌达风力机叶片之研究J新能源,1995,17(10):19-244 Thomas M.Hermann,Dharmaraj mamarthupatti,James E.Locke,Postbuckling Analysis of a wind Turbine Blade Substructure,Journal of Solar Energy Engineering,2005,127:544-5525 刘兵山,黄聪,等Patran从入门到精通M北京:中国水利出版社,20036 Lloyd G. Rules and regulations. Non-marine technology, Part IV, Regulation for the certification of wind energy conversion system. Definition of load cases, Chapter 4, 1993Editor's note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what it was like to huddle around a shortwave radio and through the crackling static from space hear the faint beeps of the world's first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events were way before my time.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, I've still seen many important weather and space events, but right now, if you were sitting next to me, you'd hear my foot tapping rapidly under my desk. I'm anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.It's like the set for a George Lucas movie floating to the edge of space.You and I will have the chance to watch a man take a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in the sky to test the winds, knowing that if they would just line up in a vertical straight line "we" would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope into uncharted territory.The guy who is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end of our atmosphere. As soon as the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and "capcom" (capsule communications), Col. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilometers). Here, "Fearless Felix" will unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. Still, he'll be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes it's not needed. Instead, he plans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he loses consciousness at mach speeds.Even if everything goes as planned, it won't. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way I'd miss this.