欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    一元二次方程及其解法应用.ppt

    • 资源ID:4866623       资源大小:933KB        全文页数:72页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一元二次方程及其解法应用.ppt

    一元二次方程及其解法,知识点回顾,1、整式方程,等号两边都是关于未知数的整式的方程,叫做整式方程,2、一元二次方程,一个整式方程整理后如果只含有一个未知数,且未知数的最高次项的次数为2次的方程,叫做一元二次方程,3、一元二次方程的一般形式,方程ax2bxc=0(a、b、c为常数,a0)称为一元二次方程的一般形式,其中ax2,bx,c分别叫做二次项,一次项和常数项,a、b分别称为二次项系数和一次项系数,4、一元二次方程的解,能使方程左右两边相等的未知数的值叫做方程的解,5、一元二次方程分类,探究交流,(1)判断方程X(X10)=X23是否是一元二次方程?(2)方程3 X22X=1的常数项是1,方程 3 X22X6=0的一次项系数是2,这种说法对吗?,答案:(1)化简后为10X3=0,所以它是一元一次方程。,(2)要将一元二次方程化为一般形式,且系数包括它前面的性质符号。,练习:,(1)方程(m2)X|m|3mx1=0是关于X的一元二次方程,求m的值。,答案:m=2,(2)当m=时,方程(m21)x2(m1)x1=0是关于x的一元一次方程。,答案:m=1,(3)已知关于x的一元二次方程(m1)x23x1=0有一个解是0,求m的值。,答案:m=1,(4)m为何值时,关于x的一元二次方程 mx2m2x1=x2x 没有一次项?,答案:m=1,活动1,如图,有一块矩形铁皮,长100 cm,宽50 cm在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?(课件:制作盒子),问题1,例 已知:关于x的方程(2m-1)x2-(m-1)x=5m是一元二次方程,求:m的取值范围.,解:原方程是一元二次方程,2m-10,m.,方程的解的定义,使方程两边相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫一元二次方程的根。如:X=3,X=2都是一元二次方程 X25X6=0 的根。注意:一元二次方程可以无解,若有解,就一定有两个解。,活动2,猜测下列方程的根是什么?,方程的根:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫做根).,4.(1)下列哪些数是方程,的根?从中你能体会根的作用吗?4,3,2,1,0,1,2,3,4,活动2,(2)若x2是方程 的一个,根,你能求出a的值吗?,根的作用:可以使等号成立.,活动3,巩固练习,1你能根据所学过的知识解出下列方程的解吗?(1);(2).,一元二次方程的解法(1)-开平方法,当ac0时,,形如(a0,c 0)的一元二次方程的解法:,当ac0时,此方程无实数解.,-3x2+7=0.,解:,例题讲解,解:系数化1,得,开平方,得,解这两个一元一次方程,得,或,小结,如何解形如 的一元二次方程?,小结与思考,方程可化为一边是 _,另一边是_,那么就可以用直接开平方法来求解.,1、怎样的一元二次方程可以用直接开平方法 来求解?,含未知数的完全平方式,一个常数,2、直接开平方法的理论依据是什么?,平方根的定义及性质,例题讲解,拓展与提高:,一元二次方程的解法(2)-配方法,用配方法解一元二次方程的步骤:,移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数 一半的平方;开方:根据平方根意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.,(1)x28x=(x4)2(2)x23x=(x)2(3)x212x=(x)2,填空,配方时,若二次项系数为1,则配上的常数是一次项系数一半的平方.,请同学解下列方程(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9,上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,,那么可得,如:4x2+16x+16=(2x+4)2,x=,(p0),或mx+n=,做一做,用配方法解下列方程:(1)x26x=1(2)x2=65x(3)x24x3=0,巩固练习,1.在用配方法解 时,方程的两边应同时加上(),2.解方程:,3、说明多项式 的值恒大于0,4、先用配方法说明:不论x取何值,代数式 值总大于0,再求出当x取何值时,代数式 的值最小?最小值是多少?,你能行吗,解下列方程.1.x2 2=0;2.x2-3x-=0;3.x24x2;4.x26x10;,5.3x2+8x 3=0;,这个方程与前4个方程不一样的是二次项系数不是1,而是3.,基本思想是:如果能转化为前4个方程的形式,则问题即可解决.,你想到了什么办法?,配方法,例2 解方程 3x2+8x-3=0.,1.化1:把二次项系数化为1;,3.配方:方程两边都加上一次项系数绝对值一半的平方;,4.变形:方程左分解因式,右边合并同类;,5.开方:根据平方根意义,方程两边开平方;,6.求解:解一元一次方程;,7.定解:写出原方程的解.,2.移项:把常数项移到方程的右边;,成功者是你吗,用配方法解下列方程.6.4x2-12x-1=0;7.3x2+2x 3=0;8.2x2+x 6=0;9.4x2+4x+10=1-8x.,10.3x2-9x+2=0;11.2x2+6=7x;12.x2 _x+56=0;13.-3x2+22x-24=0.,回味无穷,本节课复习了哪些旧知识呢?继续请两个“老朋友”助阵和加深对“配方法”的理解运用:平方根的意义:完全平方式:式子a22ab+b2叫完全平方式,且a22ab+b2=(ab)2.本节课你又学会了哪些新知识呢?用配方法解二次项系数不是1的一元二次方程的步骤:1.化1:把二次项系数化为1(方程两边都除以二次项系数);2.移项:把常数项移到方程的右边;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.用一元二次方程这个模型来解答或解决生活中的一些问题(即列一元二次方程解应用题).,如果x2=a,那么x=,一元二次方程的解法(3)-求根公式法,设a0,a,b,c 都是已知数,并且 b2-4ac0,试用配方法解方程:ax2+bx+c=0.,?,b2-4ac0,因为,解,一元二次方程ax2+bx+c=0(a0)的求根公式x=(b2-4ac0),例:解方程步骤(1)3y2-2y=1,一般步骤:(1)先把方程化为一般形式(2)确定a,b,c(3)判定=b2-4ac的值(4)代入求根公式,(2),利用公式法解下列方程,从中你能发现么?,解,用公式法解下列方程,根据方程根的情况你有什么结论?,结论1,(1)当 时,一元二次方程有实数根,结论2,(2)当 时,一元二次方程有实数根,结论3,(3)当 时,一元二次方程无实数根.,一元二次方程的解法(4)-因式分解法,自学检测题,1、什么样的一元二次方程可以用因式分解法来解?,2、用因式分解法解一元二次方程,其关键是什么?,3、用因式分解法解一元二次方程的理论依据是什么?,4、用因式分解法解一元二方程,必须要先化成一般形式吗?,用因式分解法解一元二次方程的步骤,1o方程右边化为。2o将方程左边分解成两个 的乘积。3o至少 因式为零,得到两个一元一次方程。4o两个 就是原方程的解。,零,一次因式,有一个,一元一次方程的解,例:解方程:x2=3x,解:移项,得x2-3x=0,将方程左边分解因式,得x(x-3)=0,x=0 或x-3=0,原方程的解为:x1=0 x2=-3,这种解一元二次方程的方法叫因式分解法。,特点:在一元二次方程的一边是0,而另一边易于分解成两个一次因式时,就可以用因式 分解法来解。,例1、解下列方程1、x23x10=0 2、(x+3)(x-1)=5,解:原方程可变形为 解:原方程可变形为(x5)(x+2)=0 x2+2x8=0(x2)(x+4)=0 x5=0或x+2=0 x2=0或x+4=0 x1=5,x2=-2 x1=2,x2=-4,快速回答:下列各方程的根分别是多少?,例2 解下列方程:,(1)x2-3x-10=0,(2)(x+3)(x-1)=5,填空题练习:,(1)方程x(x+1)=0的根是_.,(2)已知x=0是关于x的一元二次方程(m+1)x2+3x+m2-3m-4=0的一个根,则m=_.,(3)若方程ax2+bx+c=0的各项系数之和 满足a-b+c=0,则此方程必有一根是_.,选择题训练1.对于方程(x-a)(x-b)=0,下列结论正确的是()(A)x-a=0(B)x-a=0或x-b=0(C)x-b=0(D)x-a=0且x-b=02、方程x(x-2)=2(2-x)的根为()(A)-2(B)2(C)2(D)2、23、方程(x-1)=(1-x)的根是()(A)0(B)1(C)-1和0(D)1和0,B,C,D,用因式分解法解下列方程:,y2=3y,(2a3)2=(a2)(3a4),x2+7x+12=0,(x5)(x+2)=18,t(t+3)=28,(4x3)2=(x+3)2,我最棒,用分解因式法解下列方程,参考答案:,1.;,2.;,4.;,2.解一元二次方程的方法:直接开平方法 配方法 公式法 因式分解法,小 结:,1o方程右边化为。2o将方程左边分解成两个 的乘积。3o至少 因式为零,得到两个一元一次方程。4o两个 就是原方程的解,零,一次因式,有一个,一元一次方程的解,1.用因式分解法解一元二次方程的步骤:,右化零左分解两因式各求解,简记歌诀:,一元二次方程应用,列一元二次方程解应用题的一般步骤,1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清_、_、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需_,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).,一元二次方程应用题的主要类型,1.数字问题 如:一个三位数,个位上数为a,十位上数为b,百位上数为c,则这个三位数可表示为:_.几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x,则另两个数分别为_,_.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x,则另两个数分别为_,_.,2.平均变化率问题,(1)增长率问题:平均增长率公式为_(a为原来数,x为平均增长率,n为增长次数,b为增长后的量.)(2)降低率问题:平均降低率公式为_(a为原来数,x为平均降低率,n为降低次数,b为降低后的量.),3.利息问题,(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=_利息税=利息税率本金(1+利率期数)=本息和本金1+利率期数(1-税率)=本息和(收利息税时),4.利润(销售)问题,利润(销售)问题中常用的等量关系:利润=_-_(成本)总利润=每件的利润总件数,数字问题,例1已知两个数的和等于12,积等于32,求这两个数是多少【变式】有一个两位数等于其数字之积的3倍,其十位数字比个位数字少2,求这个两位数.,例2.某钢铁厂去年1月某种钢的产量为5000吨,3月上升到7200吨,这两个月平均每个月增长的百分率是多少?,分析:2月份比一月份增产 吨.2月份的产量是 吨 3月份比2月份增产 吨 3月份的产量是 吨,5000(1+x),5000 x,5000(1+x)x,5000(1+x)2,解:平均每个月增长的百分率为x 列方程 5000(1+x)2=7200 化简(1+x)2=1.44 x1=0.2 x2=-2.2 检验:x2=-2.2(不合题意),x1=0.2=20%答:平均每个月增长的百分率是20%.,例2:某月饼原来每盒售价96元,由于卖不出去,结果两次降价,现在每盒售价54元,平均每次降价百分之几?,总结:1.两次增长后的量=原来的量(1+增长率)2若原来量为a,平均增长率是x,增长后的量为A 则 第1次增长后的量是A=a(1+x)第2次增长后的量是A=a(1+x)2 第n次增长后的量是A=a(1+x)n 这就是重要的增长率公式.,2.两次降价后价格=原价格(1-降价率)2公式表示:A=a(1-x)2,例3某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价多少元?,【变式】某产品原来每件是600元,由于连续两次降价,现价为384元,如果两次降价的百分数相同,求平均每次降价率.,例4 如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD,求该矩形草坪BC边的长,一.复习填空:1、某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产 个?增长率是多少。2、银行的某种储蓄的年利率为6%,小民存 1000元,存满一年,利息=。存满一年连本带利的钱数是。,200,20%,1060元,利息=本金利率,增长量=原产量 增长率,60元,4.康佳生产一种新彩霸,第一个月生产了5000台,第二个月增产了50%,则:第二个月比第一个月增加了 _ 台,第二个月生产了 _ 台;,500050%,5000(1+50%),3.某产品,原来每件的成本价是500元,若每件售价625元,则每件利润是.每件利润率是.,利润=成本价利润率,125元,25%,例3,某科技公司研制成功一种产品,决定向银行贷款200万元资金用于这种产品,签定的合同上约定两年到期一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元.该公司在生产期间每年比上一年资金增长的百分数相同,求这个百分数?,解:设这个百分数为x,依题意得:200(1+x)2=72+200(1+8%)(1+x)2=1.44 1+x=1.2,则 x1=0.2,x2=-2.2(不合题意,舍去.),利息为本金的8%,四川省中考题,甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?,解:设甲每小时做x个零件则乙每小时做(x 6)个零件,依题意,得,经检验X=15是原方程的根。,答:甲每小时做18个,乙每小时12个,请审题分析题意设元,我们所列的是一个分式方程,这是分式方程的应用,由x18得x6=12,等量关系:甲用时间=乙用时间,解这个方程,得,1、甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙起骑60千米所用时间相等,求甲、乙每小时各骑多少千米?,2、甲、乙两种商品,已知甲的价格每件比乙多6元,买甲90件所用的钱和买乙60件所用钱相等,求甲、乙每件商品的价格各多少元?,试一试,

    注意事项

    本文(一元二次方程及其解法应用.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开