527有些复杂问题,往往给人以变幻莫测的感觉,难以掌握其中的奥妙当我.ppt
有些复杂问题,往往给人以变幻莫测的感觉,难以掌握其中的奥妙。当我们把思维扩展到线性空间,利用线性代数的基本知识建立模型,就可以掌握事物的内在规律,预测其发展趋势。,线性代数模型,Durer 魔方,德国著名的艺术家 Albrecht Durer(1471-1521)于1514年曾铸造了一枚名为“Melen cotia I”的铜币。令人奇怪的是在这枚铜币的画面上充满了数学符号、数学数字和几何图形。这里我们仅研究铜币右上角的数字问题。,1 Durer 魔方,特点,每行之和、每列之和、对角线之和、四个小方块之和、中心方块之和都相等,为确定的数34。,所出现的数是1至16的自然数。,四角之和、中间对边之和均为34。,最下边一行中心数为1514,正是制币的时间。,问题,是否还存在具有这些(或部分)性质的魔方?,定义,如果44数字方,它的每一行、每一列、每一对角线及每个小方块上的数字之和都为一确定的数,则称这个数字方为 Durer 魔方。,R=C=D=S,你想构造Durer魔方吗?如何构成所有的Durer魔方?Durer魔方有多少?,2 Durer魔方的生成集,所有的Durer魔方的集合为 D,O=,E=,R=C=D=S=0,R=C=D=S=4,A=,B=,类似于矩阵的加法和数乘,定义魔方的加法和数乘。易验证,D 加法和数乘封闭,且构成一线性空间。,记 M=所有的44数字方,则其维数为16。而D是M的子集,则D是有限维的线性空间。,根据线性空间的性质,如果能得到D的一组基,则任一个Durer方均可由这组基线性表示。,由 0,1 数字组合,构造所有的R=C=D=S=1的魔方。共有8 个,记为Qi,i=1,2,8。,Q1=,Q2=,Q3=,Q4=,Q5=,Q6=,Q7=,Q8=,易知,则,线性相关。,而由,=,线性无关。任一Durer方可由它们线性表示。,结论:,1 Durer方有无穷多个。,2 Durer方可由,线性组合得到。,Albrecht Durer的数字方的构成:,=,3 Durer方的应用推广,(1)要求数字方的所有数字都相等。,基为,1维空间,(2)要求行和、列和、每条主对角线及付对 角线数字和都相等。,基为,5维空间,例,R=C=H=N=46,H 主对角线,N付对角线数字和。,(3)要求行和、列和及两条对角线数字和相等。,8维空间Q。,基为,D是Q的7维子空间。,例,R=C=D=30,(4)要求行和、列和数字相等。,10维空间W。,基为,(5)对数字没有任何要求的数字方,16维空间M,空间,维数,0 1 5 7 8 10 16,思考,能否构造出其他维数的数字方?,练习,完成下面的Durer方,R=C=D=S=30,R=C=D=S=100,作业,构造你自己认为有意义的Durer方。,植物基因的分布,设一农业研究所植物园中某植物的的基因型为AA、Aa 和 aa。研究所计划采用AA型的植物与每一种基因型植物相结合的方案培育植物后代。问经过若干年后,这种植物的任意一代的三种基因型分布如何?,1 建模准备,植物遗传规律?,动植物都会将本身的特征遗传给后代,这主要是因为后代继承了双亲的基因,形成了自己的基因对,基因对就确定了后代所表现的特征。,常染色体遗传的规律:,后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对,即基因型。,如果考虑的遗传特征是由两个基因 A、a控制的,那末就有三种基因对,记为AA、Aa 和 aa。,金鱼草花的颜色是由两个遗传因 子决定的,基因型为AA的金鱼草开红花,Aa 型的开粉红花,而 aa型的开白花。人类眼睛的颜色也是通过常染色体来控制的。基因型为AA,或Aa 型的人眼睛颜色为棕色,而 aa型的人眼睛颜色为蓝色。这里AA,Aa表示同一外部特征,我们认为基因A支配基因a,即基因a对A来说是隐性的。,如,双亲体结合形成后代的基因型概率矩阵,2 假设,分别表示第n代植物中基因型为AA,Aa,aa的植物占植物总数的百分率。,第n代植物的基因型分布为,表示植物基因型初始分布。,假设1,假设2,植物中第n-1代基因型分布与第n代分布的关系由上表确定。,3 建模,4 求解模型,关键计算,特征值为1,1/2,0,M可对角化,即可求出可逆对角矩阵P,使PMP-1为对角型矩阵。,特征值为1,1/2,0的特征向量分别为,则,当 时,,经过足够长的时间后,培育出来的植物基本上呈现AA型。,5 结论,