毕业设计论文220KV降压变电所的设计.doc
220KV降压变电所的设计XXX摘要:随着我国国民经济的快速增长,用电已成为制约我国经济发展的重要因素。为保证正常的供配电要求,各地都在兴建一系列的供配电装置。本文针对220kV降压变电所的特点,阐述了220kV降压变电所的设计思路、设计步骤,并进行了相关的计算和校验。文中介绍的220kV降压变电所的设计方法、思路及新技术的应用可以作为相关设计的理论指导。关键词:降压变电所;设计方法;供配电Design of the 220 KV step-down substationSONG Xu-shengAbstract:With the fast growth of the our country national economy,using the electricity also becomes important of the development and supervision in our country. Everywhere a series of electricity device are built. The text aims at the characteristics of the 220 KV step-down substation, elaborates design way of thinking, designs step of the 220 KV step-down substation and carries on the related calculation. The text introduces the design method on way of thinking and new technique of the 220 KV step-down substation which can be the theories of related design .Key words: step-down substation ; method of design ; supply and distribution electricity前言近十年来,随着我国国民经济的快速增长,用电也成为制约我国经济发展的重要因素,各地都在兴建一系列的用配电装置。变电所的规划、设计与运行的根本任务,是在国家发展计划的统筹规划下,合理的开发和利用动力资源,用最少的支出(含投资和运行成本)为国民经济各部门与人民生活提供充足、可靠和质量合格的电能。这里所指的“充足”,从国民经济的总体来说,是要求变电所的供电能力必须能够满足国民经济发展和与其相适应的人民物质和文化生活增长的需要,并留有适当的备用。变电所由发、送、变、配等不同环节以及相应的通信、安全自动、继电保护和调度自动化等系统组成,它的形成和发展,又经历了规划、设计、建设和生产运行等不同阶段。各个环节和各个阶段都有各自不同的特点和要求,按照专业划分和任务分工,在有关的专业系统和各个有关阶段,都要制订相应的专业技术规程和一些技术规定。但现代变电所是一个十分庞大而又高度自动化的系统,在各个专业系统之间和各个环节之间,既相互制约又能在一定条件下相互支持和互为补充。为了适应我国国民经济的快速增长,需要密切结合我国的实际条件,从电力系统的全局着眼,瞻前顾后,需要设计出一系列的符合我国各个地区的用以供电的变电所,用以协调各专业系统和各阶段有关的各项工作,以求取得最佳技术经济的综合效益。本次所设计的课题是阜康地区220kV降压变电所的设计,该变电所是一个地区性重要的降压变电所,它主要承担220kV及110kV两个电压等级功率的交换,把接受功率全部送往110 kV侧线路。因此此次220 kV降压变电所的设计具有220 kV、110 kV及10kV三个电压等级。220kV侧为主功率输出,110kV侧以接受功率为主,10kV主要用于本所用电以及无功补偿。本次所设计的变电所是枢纽变电所,全所停电后,将影响整个地区以及下一级变电所的供电。1 变电所的原始资料1.1变电所的规模本次变电所设计为一区域性变电所,以供给附近地区的工业,农业,民用电。本期工程一次建成,设计中留有扩建的余地;初步设计调相机为2×60MVA,本期先建成一台。考虑到实际情况,先建220kV出线本期5回,最终8回;110kV出线共10回,10kV出线以一次建成所用电的拖动设备为主来考虑。1.2变电所的基本数据1.2.1 220kV侧基本数据系统负荷功率因数为0.9,最大负荷利用小时数为5300小时,同时率为0.9,阻抗为0.0328,每回最大负荷为:第一回(阜康市I)输送200MW;第二回(阜康市II)输送200MW;第三回(吉木萨尔)输送180MW第四回(准东)输送150MW第五回(众和电厂)输送1000MW第六回(西郊I)第七回(西郊II)第八回(备用)1.2.2 110kV侧基本数据110 kV的最大地区负荷,近期为500MW,远期为800MW,负荷功率因数为0.85,阻抗为0.0502,最大负荷利用小时数为5300小时,同时率为0.9,每回最大负荷为:第一回(米泉)输送80MW第二回(煤矿)输送80MW第三回(准东基地)输送40MW第四回(天池)输送45MW第五回(汽修厂)输送60MW第六回(高速路收费站)输送60MW 第七回(甘河子电厂)输送500MW第八回(油田作业区备用I)输送40MW第九回(油田作业区备用II)输送40MW第十回(油田作业区备用III)输送40MW1.3 所址情况变电所所在地区为平原地区,无高产农作物,土壤电阻率为,年雷暴日为165天,历年最高气温为38.5°C。变电所在系统中的地理位置如图1-1,图中220 kV侧用虚线表示,110 kV侧用实线表示。图1-1 变电所的地理位置图(注:图中地名只代表地理位置,无进出关系)1.4 系统和保护要求220kV各线在B、C相有载波通道,在A、B相有保护通道。线路对侧有电源,要求同期,电压互感器装于A相。110kV米泉、准东基地两回路对侧有电源,要求同期,电压互感器装于各线路A相。1.5 设计依据规程(包括变电所(或发电厂)设计技术规程、继电保护和自动装置设计技术规程、电气测量仪表装置设计技术规程等),电力工程设计手册1,电力工业常用设备用册,发电厂电气部分6等教材。2 变电所的设计2.1 主变压器容量,台数及形式的选择2.1.1 概述在各电压等级的变电所中,变压器是变电所中的主要电气设备之一,它担任着向用户输送功率,或者在两种电压等级之间交换功率的重要任务,同时兼顾电力系统负荷增长情况,并根据电力系统510年的发展规划综合分析,合理选择。否则,将造成经济技术上的不合理。如果主变压器容量过大,台数过多,不仅增加投资,扩大占地面积,而且还会增加损耗,给运行和检修带来不便,设备也未必能充分发挥效益;若容量选得过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。因此确定合理的变压器容量是变电所安全可靠供电和网络经济运行的保证。在生产上电力变压器分为单相、三相、双绕组、三绕组、自耦以及分裂变压器等,在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,从经济性方面来选择主变压器。选择主变压器的容量,同时要考虑到该变电所以后的扩建情况来选择主变压器的台数及容量。2.1.2 主变压器台数的选择由原始资料可知,本次所设计的是220kV降压变电所,它是以220kV输出功率为主。把所受的功率通过主变传输至110kV及10kV母线上。若全所停电后,将引起下一级变电所与地区电网瓦解,影响整个市区的供电,因此选择主变压器台数时,要确保供电的可靠性。为了保证供电可靠性,避免一台主变压器故障或检修时影响供电,变电所中一般装设两台主变压器。当装设三台及三台以上时,变电所的可靠性虽然有所提高,但接线网络较复杂,且投资增大,同时增大了占用面积和配电设备及用电保护的复杂性,以及带来维护和倒闸操作等许多复杂化。而且还会造成中压侧短路容量过大,不宜选择轻型设备。考虑到两台主变压器同时发生故障机率较小。适用远期负荷的增长以及扩建,而当一台主变压器故障或者检修时,另一台主变压器可承担70%的负荷保证全变电所的正常供电。故近期选择两台主变压器互为备用,远期再加一台变压器以提高供电的可靠性。2.1.3 主变压器容量的选择主变压器容量一般按变电所建成近期负荷,510年的规划负荷选择,并适当考虑远期1020年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,该所近期和远期负荷都给定,所以应按近期和远期总的负荷来选择主变压器的容量,根据变电所带负荷的性质和电网结构来确定主变压器的容量,对于有重要负荷的变电所,应考虑当一台变压器停运时,其余变压器容量在过负荷能力允许时间内,保证用户的一级和二级负荷,对一般性能的变电所,当一台主变压器停运时,其余变压器容量应保证全部负荷的70%80%。该变电所是按70%全部负荷来选择。因此装设两台变压器以供变电所用。当一台变压器停运时,可保证对60%负荷的供电,考虑到变压器的事故过负荷能力为40%,则可保证98%负荷供电,而高压侧220kV母线的负荷不需要跟主变压器倒送,因为该变电所的电源引进线是220kV侧引进的。其中,中压侧及低压侧全部负荷需经主变压器传输至各母线上。10kV母线上无负荷,主要用来无功补偿用。即:主变压器的容量为S总 = 0.7(S中压侧+S低压侧)。2.1.4 主变压器型式的选择2.1.4.1 主变压器相数的选择当不受运输条件限制时,在330kV以下的变电所均应选择三相变压器。而选择主变压器的相数时,应根据变电所的基本数据以及所设计变电所的实际情况来选择。单相变压器组,相对来讲投资大,占地多,运行损耗大,同时配电装置以及继电保护和二次接线的复杂化,也增加了维护及倒闸操作的工作量。本次设计的变电所,位于市郊区,交通便利,不受运输等条件限制,所址建在平原地区,故本次设计的变电所应选用三相变压器。2.1.4.2 绕组数的选择在具有三种电压等级的变电所,如通过主变压器的各侧绕组的功率均达到该变压器容量的15%以上或低压侧虽无负荷,但在变电所内需装设无功补偿设备,主变压器宜采用三绕组变压器。一台三绕组变压器的价格及所用的控制和辅助设备,比相对的两台双绕组变压器都较少,而且本次所设计的变电所具有三种电压等级,考虑到运行维护中安装调试灵活,操作上满足各种继电保护的需求,工作量少及占地面积小,价格适宜等因素,故本次设计的变电所选择三绕组变压器。2.1.4.3 主变调压方式的选择为了满足用户的用电质量和供电的可靠性,220kV及以上网络电压应符合以下标准:枢纽变电所二次侧母线的运行电压控制水平应根据枢纽变电所的位置及电网电压降而定,可为电网额定电压的11.3倍,在日负荷最大、最小的情况下,其运行电压控制在水平的波动范围不超过10%,事故后不应低于电网额定电压的95%。电网中任一点的运行电压,在任何情况下严禁超过电网最高电压,变电所一次侧母线的运行电压正常情况下不应低于电网额定电压的95%100%。调压方式分为两种,一种是不带负荷切换,称为无载调压,调整范围通常在±5%以内;另一种是带负荷切换,称为有载调压,调整范围可达30%。由于该变电所的电压波动较大,故选择有载调压方式,才能满足要求。2.1.4.4 连接组别的选择变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。全星形接线虽然有利于并网时相位一致的优点,而且全星形接法,零序电流没有通路,相当于与外电路断开,即零序阻抗相当于无穷大,对限制单相及两相接地短路都有利,同时便于接消弧线圈限制短路电流。但是三次谐波无通路,将引起正弦波的电压畸变,对通讯造成干扰,也影响保护整定的准确度和灵敏度。如果影响较大,还必须综合考虑系统发展才能选用。我国规定110kV以上的电压等级的变压器绕组常选用中性点直接接地系统,而且还要考虑到三次谐波的影响,会使电流、电压畸变。采用三角形接法可以消除三次谐波的影响。所以应选择Yo/Yo/接线方式。故本次设计的变电所选用主变压器的接线组别为:Yo/Yo/1211。2.1.4.5 容量比的选择由原始资料可知,110kV中压侧为接受功率绕组,而10kV侧主要用于本身所用电以及无功补偿装置,所以容量比选择为:100/100/50。2.1.4.6 主变压器冷却方式的选择主变压器一般采用的冷却方式有:自然风冷却,强迫油循环风冷却,强迫油循环水冷却。自然风冷却:一般只适用于小容量变压器。强迫油循环水冷却:虽然散热效率高,节约材料减少变压器本体尺寸等优点。但是它要有一套水冷却系统和相关附件,冷却器的密封性能要求高,维护工作量较大。所以,选择强迫油循环风冷却方式。2.1.5 主变压器容量的确定计算根据变电所的基本数据可得:(1)110kV侧最大负荷:近期为500MW,同时率为0.9,其中一台事故停用后,其余主变压器的容量应保持该所全部负荷的60以上。=229.5(MVA)因选择两台主变压器,选择型号为:OSFPS7 120000/220额定电压: 高压220±2×2.5%kV,中压121kV,低压10.5kV阻抗电压%: 高中:2834% 高低:810% 中低:1824%容量比为: 100/100 /50连接组标号:Y0 / Y0 / 1211空载电流: 0.8空载损耗: 70kW短路损耗: 320kW2.1.6 所用变压器容量的选择对于枢纽变电站,总容量为60MVA及以上的变电所,装有水冷却或强迫油循环冷却的主变压器以及装有同步调相机的变电所,均装设两台所用变压器,分别接在最低一级母线的不同分段上,对装有两台所用变压器时,采用单母线分段接线方式。由于本次设计的变电所,采用两台120MVA的主变压器,故采用两台所用变压器,互为备用。且容量相等,一台停运时,另一台承受全部负荷。所用变压器负荷计算采用换算系数法,不经常短时及不经常持续运行的负荷均可不列入计算负荷。当有备用所用变压器时,其容量应与工作变压器相同。所用变压器容量按下式计算: 所用变压器容量(kVA) 所用动力负荷之和(kW) 所用动力负荷换算系数,一般取= 0.85 电热及照明负荷之和(kW)所用电的接线方式,在主接线设计中,选用为单母线分段接线,选两台所用变压器互为备用,每台变压器容量及型号相同,并且分别接在不同的母线上。2.1.7 所用变压器容量的选择计算名 称 第一段母线容量(kW) 第二段母线容量(kW)变压器修理动力 P1 34.29其他动力 P2 42.6 46.9变电所空调动力 P3 15 15电 热 P4 43.8 43.92照 明 P5 27.13 27.57调相机拖动设备 P6 即第一段母线总容量:= 0.85(P1 + P2 + P3)+ P4 + P5 = 0.85(34.29+42.6+15)+43.8+27.13 = 149(kVA) 第二段母线总容量:= 0.85(P2 + P3)+ P4 + P5 = 0.85(46.9+15)+43.92+25.57 = 122.1(kVA)故变电站所用变压器的总容量为:= 149 + 124.1 = 271.1(kVA)所以选择两台Sq315/10型号的所用变压器互为备用。额定电压: 10 kV阻抗电压(%): 4连接组标号: Y / Y0122.2 电气主接线的选择2.2.1 概述主接线是变电所电气设计的首要部分,它是由高压电器设备通过连接线组成的汇集和分配电能的电气主回路,也是构成电力系统的重要环节。主接线的确定对电力系统整体及变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备的选择、配电装置、继电保护和控制方式的选定有较大影响。因此,必须正确处理好各方面的关系。我国变电所设计技术规程SDJ279规定:变电所的主接线应根据变电所在电力系统中的地位、回路数、设备特点及负荷性质等条件确定,并且满足运行可靠,简单灵活、操作方便和节约投资等要求,便于扩建。(1)可靠性:安全可靠是电力生产的首要任务,保证供电可靠和电能质量是对主接线最基本要求,而且也是电力生产和分配的首要要求。主接线可靠性的具体要求:1)断路器检修时,不宜影响对系统的供电;2)断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要求保证对一级负荷全部和大部分二级负荷的供电;3)尽量避免变电所全部停运的可靠性。(2)灵活性:主接线应满足在调度、检修及扩建时的灵活性。1)为了调度的目的:可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修方式以及特殊运行方式下的调度要求;2)为了检修的目的:可以方便地停运断路器,母线及继电保护设备,进行安全检修,而不致于影响电力网的运行或停止对用户的供电;3)为了扩建的目的:可以容易地从初期过渡到其最终接线,使在扩建过渡时,无论在一次和二次设备装置等所需的改造为最小。(3)经济性:主接线在满足可靠性、灵活性要求的前提下做到经济合理。1)投资省:主接线应简单清晰,以节约断路器、隔离开关、电流和电压互感器、避雷器等一次设备的投资,要能使控制保护不过复杂,以利于运行并节约二次设备和控制电缆投资;要能限制短路电流,以便选择价格合理的电气设备或轻型电器;在终端或分支变电所推广采用质量可靠的简单电器;2)占地面积小:主接线要为配电装置布置创造条件,以节约用地和节省构架、导线、绝缘子及安装费用。在不受运输条件许可下,都采用三相变压器,以简化布置。3)电能损失少:经济合理地选择主变压器的型式、容量和数量,避免两次变压而增加电能的损失。2.2.2 主接线的方式选择电气主接线是根据电力系统和变电所具体条件确定的,它以电源和出线为主体,在进出线路多时(一般超过四回)为便于电能的汇集和分配,常设置母线作为中间环节,使接线简单清晰、运行方便,有利于安装和扩建。而本所各电压等级进出线均超过四回,所以采用有母线的连接方式。2.2.2.1 单母线接线单母线接线虽然接线简单清晰、设备少、操作方便,便于扩建和采用成套配电装置等优点,但是不够灵活可靠,任一元件(母线及母线隔离开关)等故障或检修时,均需使整个配电装置停电。单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后,才能恢复非故障段的供电,并且电压等级越高,所接的回路数越少,一般只适用于一台主变压器。单母线接线适用于110220kV配电装置的出线回路数不超过两回,3560kV,配电装置的出线回路数不超过3回,610kV配电装置的出线回路数不超过5回,才采用单母线接线方式,故不选择单母线接线方式。2.2.2.2 单母线分段用断路器,把母线分段后,对重要用户可以从不同段引出两个回路;有两个电源供电。当一段母线发生故障,分段断路器自动将故障切除,保证正常段母线不间断供电或不致于使重要用户停电。但是,一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电,而出线为双回时,常使架空线路出现交叉跨越,扩建时需向两个方向均衡扩建,单母线分段适用于:110kV220kV配电装置的出线回路数为810回,3560kV配电装置的出线回路数为48回,610kV配电装置出线为6回及以上,则采用单母线分段接线。2.2.2.3 单母线分段带旁路这种接线方式适用于进出线不多、容量不大的中小型电压等级35110 kV的变电所较为实用,具有足够的可靠性和灵活性。2.2.2.4 桥式接线当只有两台变压器和两条输电线路时,采用桥式接线,所用断路器数目最少,它可分为内桥和外桥接线。内桥接线适合于输电线路较长,故障机率较多而变压器又不需经常切除时,采用内桥式接线。当变压器故障时,需停相应的线路。外桥接线适合于输电线路较短,且变压器随经济运行的要求需经常切换或系统有穿越功率的线路。为检修断路器QF,不致引起系统开环,有时增设并联旁路隔离开关以供检修QF时使用。当线路故障时需停止运行相应的变压器。所以,桥式接线可靠性较差,虽然它有使用断路器少、布置简单、造价低等优点,但是一般系统把具有良好的可靠性放在首位,故不选用桥式接线。2.2.2.5 3/2断路器接线两个元件引线用三台断路器接在两组母线上组成一个半断路器,它具有较高的供电可靠性和运行灵活性,任一母线故障或检修均不致停电,但是它使用的设备较多,占地面积较大,增加了二次控制回路的接线和继电保护的复杂性,且投资大。2.2.2.6 双母线接线它具有供电可靠、调度灵活、扩建方便等优点,而且,检修另一组母线时,不会停止对用户连续供电。如果需要检修某线路的断路器时,不装设“跨条”,则该回路在检修期需要停电。对于,110kV220kV输送功率较多,送电距离较远,其断路器或母线检修时,需要停电,而断路器检修时间较长,停电影响较大,一般规程规定,110kV220kV双母线接线的配电装置中,当出线回路数达7回,(110kV)或5回(220kV)时,一般应装设专用旁路断路器和旁路母线。2.2.2.7 双母线分段接线双母线分段,可以分段运行,系统构成方式的自由度大,两个元件可以完全分别接到不同的母线上,对大容量且在需相互联系的系统是有利的,由于这种母线接线方式是常用传统技术的一种延伸,因此在继电保护方式和操作运行方面都不会发生问题。而较容易实现分阶段的扩建等优点,但是易受到母线故障的影响,断路器检修时要停运线路,占地面积较大,一般当连接的进出线回路数在11回及以下时,母线不分段。综上几种主接线的优缺点和可靠性及经济性,根据设计的原始资料可知该变电所选择双母线接线方式。为了保证双母线的配电装置,在进出线断路器检修时(包括其保护装置和检修及调试),不中断对用户的供电,可增设旁路母线,或旁路断路器。当110kV出线为7回及以上,220kV出线在4回以下时,可用母联断路器兼旁路断路器用,这样节省了断路器及配电装置间隔。2.2.2.8 选择设计方案由设计方案确定的负荷情况:220kV近期7回,远期1回,110kV近期8回,远期2回。可以确定该变电所主接线采用以下三种方案进行比较:(1)方案一220kV采用双母线带旁路母线接线方式,110kV也采用双母线带旁路母线接线,根据电力工程电气设计手册可知,220kV出线5回以上,装设专用旁路断路器,考虑到220kV近期7回,装设专用母联断路器和旁路断路器。根据电力工程电气设计手册、发电厂电气部分和变电所的基本数据,220kV主接线形式如图2-1:图2-1 220kV主接线形式图110kV母线上近期负荷为8回出线,根据电力工程电气设计手册可知,110kV出线为8回及以上时装设专用旁路断路器。而由原始资料可知,110kV出线为8回,装设专用母联断路器和旁路断路器。根据电力工程电气设计手册、发电厂电气部分和原始资料,110kV主接线形式如图2-2:图2-2 110kV主接线形式图10kV,因只用来做无功补偿装置使用,可采用单母线分段接线方式。出线回路数为14回、接线形式图2-3:图2-3 10kV主接线形式图其接线特点:1)220kV、110kV都采用双母线带旁路,并且设计专用的旁路断路器,使检修或故障时,不致于破坏双母线接线的固有运行方式并且不致于影响停电。 2)10kV虽然无负荷,但有所用电及无功补偿装置,如采用单母线接线时,接线简单清晰,设备少,操作方便等优点。如果某一元件故障或检修,均需使整个配电装置停电,将影响全变电所的照明及操作电源、控制电源保护等。以上接线的缺点:10kV采用单母线运行时,操作不够灵活、可靠,任一元件故障或检修,均需使整个配电装置停电。(2)方案二1)220kV采用3/2接线,每一回路经一台断路器接至母线,两回路间设一联络断路器形成一串,运行时,两组母线和全部断路器都投入工作,形成环状供电,具有较高的供电可靠性和运行灵活性。2)110kV近期出线7回,可采用双母线接线方式,出线断路器检修时,可通过“跨条”来向用户供电。而任一母线故障时,可通过另一组母线供电。但由于双母线故障机率较小,故不考虑。3)10kV采用单母线接法,线路用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障母线分开后才能恢复非故障的供电。其接线的特点:1)220kV采用3/2接线方式时,任一母线故障或检修,均不致于停电,除联络断路器故障时与其相连的两回线路短时停电外,其它任何断路器故障或检修都不会中断供电,甚至两组母线同时故障(或一组检修,另一组故障时)的极端情况下,功率仍能继续输送。2)110kV采用双母线接线方式,出线回路较多,输送和穿越功率较大,母线事故后能尽快恢复供电,母线和母线设备检修时可以轮流检修,不至中断供电,一组母线故障后,能迅速恢复供电,而检修每回路的断路器和隔离开关时需要停电。3)10kV采用单母线隔离开关分段:不够灵活,当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障段的供电,当一段母线或母线隔离开关故障或检修,该母线的回路都在检修期间内停电。优点:方案一 220kV、110kV都采用双母线带旁路,并且设计专用的旁路断路器,使检修或故障时,不致破坏双母线接线的固有运行方式,及不致影响停电。可靠性高于方案二,但方案一10kV采用单母线运行时,操作不够灵活、可靠,任一元件故障或检修,均需使整个配电装置停电。其可靠性不如方案二。(3)方案三 1)220kV、110kV都采用双母线带旁路,并且设计专用的旁路断路器,使检修或故障时,不致于破坏双母线接线的固有运行方式及影响停电。2)10kV虽无出线,但为了满足变电所用电的可靠性,有用装设两台所用变压器,为互备方式运行,其接线方式为单母线分段接线方式。其接线方式的特点:1)双母线带旁路母线,并设专用的旁路断路器,其经济性相对来是提高了,但是保证了各段出线断路器检修和事故不致影响供电的情况下,而且也不会破双母运行的特性,继电保护也比较容易配合,相对来可靠性即提高了。2)10kV为了保证所用电可以从不同段两出线取得电源,同时一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电。以上三种方案相比较,方案三的可靠性略高于方案一,其经济性略低于方案二,操作灵活性居于方案一、三之中,根据变电所的基本数据,方案三满足要求,而且根据可靠性、灵活性、经济性,只有方案三更适合于本次设计切身利益,故选择方案三。3 变电所短路电流计算3.1 概述电力系统的电气设备在其运行中都必须考虑到可能发生的各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的短路,因为它们会破坏用户的正常供电和电气设备的正常运行。短路是电力系统的严重故障,所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地系统)发生通路的情况。在三相系统中,可能发生的短路有:三相短路,两相短路,两相接地短路和单相接地短路。其中,三相短路是对称短路,系统各相与正常运行时一样仍处于对称状态,其他类型的短路都是不对称短路。电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。但三相短路虽然很少发生,其情况较严重,应给以足够的重视。因此,我们都采用三相短路来计算短路电流,并检验电气设备的稳定性。3.2 短路计算的目的及假设3.2.1 短路电流计算目的短路电流计算目的是:1)在选择电气主接线时,为了比较各种接线方案或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。2)在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。3)在设计屋外高压配电装置时,需按短路条件检验软导线的相间和相对地的安全距离。4)在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。5)按接地装置的设计,也需用短路电流。3.2.2 短路电流计算的一般规定短路电流计算的一般规定是:1)验算导体和电器动稳定、热稳定以及电器开断电流,应按工程的设计规划容量计算,并考虑电力系统的远景发展规划(一般为本期工程建成后510年)。确定短路电流计算时,应按可能发生最大短路电流的正常接线方式,而不应按只在切换过程中可能并列运行的接线方式。2)选择导体和电器用的短路电流,在电气连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流的影响。3)选择导体和电器时,对不带电抗器回路的计算短路点时,应按选择在正常接线方式时短路电流为最大的地点。4)导体和电器的动稳定、热稳定以及电器的开断电流一般按三相短路验算。3.2.3 短路计算基本假设短路计算基本假设是:1)正常工作时,三相系统对称运行;2)所有电源的电动势相位角相同;3)电力系统中各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小而发生变化;4)不考虑短路点的电弧阻抗和变压器的励磁电流;5)元件的电阻略去,输电线路的电容略去不计,及不计负荷的影响;6)系统短路时是金属性短路。3.2.4 短路电流计算基准值高压短路电流计算一般只计算各元件的电抗,采用标幺值进行计算,为了计算方便选取如下基准值:基准容量:= 100MVA基准电压:(KV) 10.5 115 230基准电流: (KA) 0.502 0.2513.2.5 短路电流计算的步骤1)计算各元件电抗标幺值,并折算到同一基准容量下;2)给系统制订等值网络图;3)选择短路点;4)对网络进行化简,把供电系统看成为无限大系统,不考虑短路电流周期分量的衰减求出电流对短路点的电抗标幺值,并计算短路电流的标幺值、有名值;标幺值: 有名值: 5)计算短路容量、短路电流冲击值;短路容量: 短路电流冲击值:6)列出短路电流计算并得出结果。3.2.6 短路电流计算3.2.6.1 短路计算的基本假设选取=100MVA,= 230kV,系统阻抗归算到基准容量:= 100MVA,由变电所的基本数据及短路点的开断能力取220kV侧系统阻抗为0.0328,110kV侧系统阻抗为0.0502,即系统如图3-1:110kV10kV220kV图3-1 220kV侧-110kV侧系统阻抗图3.2.6.2 计算参数所选择变压器的参数如表3-1:阻抗电压高一中中一低高一低%81018242834表3-1 变压器的参数各绕组等值电抗取10,取20,取30其中1代表高压端,2代表中压端。3代表低压端。则:% = (% + %) = (10+3020)= 10% = (% + %) = (10+ 2030)=0% = (% + %) = (20 + 3010)=20各绕组等值电抗标么值为: = ×= 0.083 = ×= 0 = ×= 0.167根据上述计算结果可以制订系统网络图如图3-2:图3-2 变压器各绕组等值电抗图3.2.7等值网络简化及计算3.2.7.1 220kV母线发生三相短路当220kV母线发生三相短路时,即d1点短路时10kV母线侧因没有电源,无法向220kV侧提供短路电流,即可略去不计。网络简化如图3-3: 图3-3 220kV母线发生三相短路网络简化图把计为,即: = =把计为,即:= 换算到220kV短路电流有名值为: = = ×= 取 短路电流全电流最大有效值为:= I = 2 I = 1.51I = 当不计周期分量衰减时冲击电流为: =×1.87 = 2.55 = 2.55×10.86 = 27.69(kA)短路容量为: = ×230×10.86 = 4326.2(MVA)3.2.7.2 110kV母线上发生三相短路当110kV母线上发生三相短路时,即d2的等值网络简化如图3-4: 图3-4 110kV母线发生三相短路网络简化图= = 把即:= = 换算到110kV的短路电流有名值为: =短路电流全电流最大有效值为:= 短路电流的冲击值为:=短路容量为:= 3.2.7.3 10kV母线值发生三相短路当10kV母线值发生三相短路,即d3的等值网络简化如图3-5:图3-5 10kV母线发生三相短路网络简化图把 = = 0.028= = 0.0557=把星形变换成三角形,即: + = = = = 换算到10kV侧有名值:=短路电流全电流最大有效值及冲击值:=短路容量: = 则系统短路点的各个值如表3-1:表3-1 短路电流短路点的编 号基准电压(kV)基准电流(kA)额定电流(kA)短路电流标B值(kA)短路电流有名值(kA)稳态短路电流标B值稳态短路电流标有名值短路电流冲击值 d12300.250.2543.2810.8643.2810.8627.69d21150.50.552.1626.1852.1626.1866.76d310.55.55.512.0166.0412.0166.04168.4短 路点 的编 号短路全电流最大有效值 (kA)短路容量d116.294326.2d239.53521