毕业设计论文连接板冲压模具设计【含全套CAD设计图纸】.doc
-
资源ID:4835025
资源大小:838.01KB
全文页数:49页
- 资源格式: DOC
下载积分:10金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
毕业设计论文连接板冲压模具设计【含全套CAD设计图纸】.doc
连接板冲压模具设计 毕业设计 连接板冲压模具设计系 部 现代制造工程系 专 业 名 称 模具设计与制造 班 级 21 连接板冲压模具设计摘 要 本文主要介绍的是连接板倒装复合模设计的全过程,首先对连接板零件进行工艺分析、确定冲压工艺方案及模具结构形式,然后进行模具总体设计,接下来对模具设计基本参数进行计算,如排样设计、计算压力中心、计算冲裁力、计算工作零件的刃口尺寸等,最后根据设计数据选择典型模具零件、模具组合、以及压力机。模具中所设计的图型和图纸,Auto CAD绘制连接板倒装复合模的零件图和装配图,先画图框标题栏,其次画图形,再标注尺寸、形位公差、粗糙度、技术要求;最后完成毕业设计说明书。 关键词:冲压模具;倒装复合模;连接板目 录1 绪论12 冲压件工艺分析2 2.1 材料分析2 2.2 零件结构22.3 尺寸精度23 冲裁方案的确定33.1 冲裁工艺方案的确定33.2 冲裁工艺方法的选择33.3 冲裁结构的选取54 模具总体结构的确定64.1 模具类型的选择64.2 送料方式的选择64.3 定位方式的选择64.4 卸料、出件方式的选择64.5 导向方式的选择65 工艺参数计算85.1 排样方式的选择85.1.1 搭边值的确定9 5.1.2 材料利用率的计算115.2 冲压力的计算125.2.1 总冲裁力的计算125.2.2 卸料力、推件力的计算135.2.3 初选压力机145.2.4 初选压力机145.2.5 压力中心的确定156 刃口尺寸计算176.1 冲裁间隙的确定1716.2 刃口尺寸的计算及依据与法则187 主要零部件设计227.1 凹模设计22 7.1.1凹模刃口结构形式的选择22 7.1.2 凹模刃口结构形式的选择227.1.3 凹模精度与材料的确定227.2 凸模的设计257.2.1 凸模结构的确定257.2.2 凸模材料的确定257.2.3 凸模精度的确定257.2.4 凸模高度的确定257.3 凸凹模设计267.3.1 凸凹模外形的确定267.3.2 凸凹模材料的选取267.3.3 凸凹模精度的确定267.3.4 凸凹模壁厚的确定267.3.5 凸凹模洞口类型的选取277.3.6 凸凹模尺寸的设计277.4 定位零件的选用287.5 卸料装置的选定297.5.1 卸料装置的选用297.5.2 卸料螺钉的选用297.5.3 卸料板外型设计297.5.4 卸料板材料的选择307.5.5 卸料板的结构设计307.5.6 卸料板整体精度的确定307.5.7 卸料橡胶的选用307.6 推件装置的选定327.6.1 推件块的选用3217.6.2 推板的选用337.6.3 推杆的设计337.7 上下模座的选用33 7.8 连接及固定零件的选用347.8.1螺钉与销钉的选用347.8.2 模柄的选用347.8.3 凸模固定板的设计357.8.4 凸凹模固定板的设计357.8.5 垫板的设计368 冲压设备的校核与选定37 8.1 冲压设备的校核37 8.2 冲压设备的选用379 压力机的选择3810 模具结构简述39结论40致谢41参考文献42附录4311 绪论 模具是现代工业生产中重要的工艺装备之一,在铸造、锻造、冲压、塑料、橡胶、玻璃、粉末冶金、陶瓷等生产行业中得到广泛的应用。冲压成形也成为现代工业中一种十分重要的加工方法,用以生产各种板料零件,具有很多独特的优势,其成形件具有自重轻、刚度大、强度高、互换性好、成本低、生产过程便于实现机械自动化及生产效率高的特点,是一种其他加工方法所不能相比和不可替代的先进制造技术,在制造业中具有很强的竞争力,被广泛应用于汽车、能源、机械、信息、航天航空、国防工业和日常生活的生产中。模具CAD/CAE/CAM是改造传统模具生产方式的关键技术,是一项高科技、高效益的系统工程。它以计算机软件的形式,为企业提供一种有效的辅助工具,使工程技术人员借助与计算机对产品性能、模具结构、成形工艺、数控加工及生产管理进行设计与优化。模具CAD/CAE/CAM技术能显著缩短模具设计与制造周期,降低生产成本和提高产品质量已成为模具界的共识。模具CAD/CAE/CAM在近20年中经历了从简单到复杂,从试点到普及的过程。进入本世纪以来,模具CAD/CAE/CAM技术发展速度更快,应用范围更广。设计出正确合理的模具不仅能够提高产品质量、生产效率、使用寿命。还可以提高产品经济效益。在进行模具设计时,必须清楚模具的加工工艺,设计出的零件要能加工、易加工。充分了解模具基础知识和应用是设计者进行模具设计的前提。连接板是冲压生产的一个典型零件,常用于农业机械方面,具有很强的实用性,其模具设计有一定的实用价值。对于该制件利用先进的模具生产提高生产效益、保证产品质量、节约成本,从而取得较高的经济效益。本设计涉及的知识面广,综合性强,在巩固大学所学的知识的同时,对于提高设计者的创新能力、协调能力,开阔设计思路等方面为作者提供了一个良好的平台。2 冲压件工艺分析工件名称:连接板;生产批量:年产量20万件;材 料:10钢;材料厚度:2mm;未注公差:IT14。图2-1 连接板零件简图2.1 材料分析表2-1 部分碳素钢抗剪性能材料名称牌号材料状态抗剪强度(Mpa)抗拉强度(Mpa)屈服点(Mpa)伸长率(%)碳素结构钢10已退火260340290430205331527038033547022527由上表2-1及参考文献1可知:10钢是优质碳素结构钢,具有较好的冲压性和焊接性,常用于制造受力不大,而韧性要求较好的零件或构件,适合要求较高的零件。综合评比均适合冲裁加工。2.2 零件结构零件结构形状相对简单,无尖角,对冲裁加工较为有利零件结构简单,对冲裁加工较为有利。孔的最小尺寸为12mm,满足冲裁最小孔径dmin1.0t=2mm的要求。最小壁厚大于5mm满足许用壁厚要求(两孔之间,大孔与小孔之间、孔与矩长方形之间、孔与边缘之间的壁厚),零件的结构满足冲裁要求。2.3 尺寸精度该零件由公差等级表查的:其孔的公差要求都属IT11,所以普通冲裁可以达到零件的精度要求。对于未注公差尺寸,属于自由尺寸,按IT12查表2-1得到:120-0.15、 R150-0.18。通过查公差等级表,该零件冲裁工艺性能较好,能够满足普通冲裁零件精度要求。由参考文献2 得下表表2-1 常见零件公差等级表公差等级IT4IT5IT6IT7IT8IT9IT10IT11IT12IT13IT14基本尺寸/mm/mm3>36>610>1018>1830>3050>5080>80120>120180>180250>250315>315400>400500344567810121416182045689111315182023252768991316192225293236401012151821253035404652576314182227333946546372818997253036435262748710011513014015540485870841001201401601852102302506075901101301601902202502903203604000.100.120.150.180.210.250.300.350.400.460.520.570.630.140.180.220.270.330.390.460.540.630.720.810.890.970.250.300.360.430.520.620.740.871.001.151.301.401.553 冲裁方案的确定3.1 冲裁工艺方案的确定在冲裁工艺分析和技术经济分析的基础上,根据冲裁件的特点确定工艺方案。工艺方案分为冲裁工序的组合和冲裁顺序的安排。3.2 冲裁工艺方法的选择冲裁模分为单工序冲裁、复合模和级进模三种。方案一:先落料,后冲孔。单工序冲裁是在压力机一次行程内只完成一个冲压工序的冲裁模。方案二:落料冲孔复合冲压,采用复合模生产。复合冲裁是在压力机一次行程内,在模具的同一位置同时完成两个或两个以上的冲压工序。方案三:级进模是把冲裁件的若干个冲压工序,排列成一定的顺序,在压力机的一次行程中条料在冲模的不同位置上,分别完成工件所要求的工序。其三种工序的性能见表3-1。表3-1 单工序冲裁、级进冲裁和复合冲裁性能比较项目单工序模复合模级进模生产批量小批量中批量和大批量中批量和大批量冲压精度较低较高较高冲压生产率低,压力机一次行程内只能完成一个工序较高,压力机一次行程内可完成二个以上工序高,压力机在一次行程内能完成多个工序实现操作机械化自动化的可能性较易,尤其适合于多工位压力机上实现自动化制件和废料排除较复杂,只能在单机上实现部分机械操作容易,尤其适应于单机上实现自动化生产通用性通用性好,适合于中小批量生产及大型零件的大量生产通用性较差,仅适合于大批量生产通用性较差,仅适合于中小型零件的大批量生产冲模制造的复杂性和价格结构简单,制造周期短,价格低冲裁较复杂零件时,比级进模低冲裁较简单零件时低于复合模根据分析结合表3-1得出结论:方案一模具结构简单,但需两道工序两副模具,生产效率低,难以满足该零件的年产量要求。方案二只需一副模具,冲压的形状精度和尺寸容易保证且生产效率也高,尽管模具结构较方案一复杂,但由于零件的几何形状简单,模具制造难度较小。方案三只需一副模具,生产效率很高,但零件的冲裁精度稍差。欲保证冲压件的形状精度,需要在模具上设置导正销,故模具制造、安装较复合模具复杂。通过对上述三种方案的分析比较,该零件的冲压生产采用方案二为佳。3.3 冲裁结构的选取按照复合模工作零件的安装位置不同,分为正装式复合模和倒装式复合模两种,两种的优点、缺点及适用范围见表3-2。表3-2 正装式复合模、倒装式复合模的优点、缺点及适用范围比较项目正装(顺装)式复合模倒装式复合模结构凸凹模装在上模,落料凹模和冲孔凸模装在下模凸凹模装在下模,落料凹模和冲孔凸模装在上模优点冲出的冲件平直度较高结构较简单缺点结构复杂,冲件容易被嵌入边料中影响操作不宜冲制孔边距离较小的冲裁件适用范围冲制材质较软或板料较薄的平直度要求较高的冲裁件,还可以冲制孔边距离较小的冲裁件不宜冲制孔边距离较小的冲裁件,但倒装式复合模结构简单、又可以直接利用压力机的打杆装置进行推件,卸料可靠,便于操作,并为机械化出件提供了有利条件,故应用十分广泛由参考文献2可知,正装式复合模适合于冲制材质较软或板料较薄的平直度要求较高的冲裁件,还可以冲制孔边距离较小的冲裁件。倒装式冷冲模不宜冲制孔边距离较小的冲裁件,但倒装式冷冲模结构简单,可以直接利用压力机打杆装置进行推件,卸件可靠,便于操作,故应用十分广泛。综上所述,该制件结构形状简单,精度要求较低,孔边距较大,宜采用倒装式复合模。4 模具总体结构的确定4.1 模具类型的选择 由以上冲压工艺分析可知,采用复合模冲压,模具类型为倒装式复合模。4.2 送料方式的选择由于零件的生产批量是大批量及模具类型的确定,合理安排生产可采用前后自动送料方式。4.3 定位方式的选择因为该模具采用的是条料,控制条料的送进方向采用导料销,无侧压装置。控制条料的送进布局采用挡料销定距。而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。4.4 卸料、出件方式的选择 刚性卸料是采用固定卸料板结构,常用于较硬、较厚且精度要求不高的工件冲裁后卸料。当卸料版只起卸料作用时与凸模间隙随材料厚度的增大而增加,单边间隙取(0.20.5)t。当固定卸料板还要起到对凸模的导向作用时卸料板与凸模的配合间隙应该小于冲裁间隙,此时要求凸模卸料时不能完全脱离卸料板。主要用于卸料力较大,材料厚度大于2mm的材料。弹性卸料具有卸料与压料的双重作用,主要用在冲料厚在2mm及以下厚度的板料,卸料板与凸模之间的单边间隙选择(0.10.2)t,若弹性卸料板还要起对凸模导向作用时,二者的配合间隙性小于冲裁间隙,常用作落料模、冲孔模、症状复合模的卸料装置。由于有压料作用,冲裁件比较平整。弹压卸料板与弹性元件、卸料螺钉组成弹压装置。 工件平直度较高,料厚为2mm相对较薄,卸料力不大,由于弹性卸料模具比刚性卸料模具方便,操作者可以看见条料在模具中的送进状态,且弹性卸料板对工件施加的柔性力,不会损伤工件表面,故可采用弹性卸料。4.5 导向方式的选择方案一:采用对角导柱模架。由于导柱安装在模具压力中心对称的对角线上,所以上模座在导柱上滑动平稳。常用于横向送料级进模或纵向送料的落料模、复合模。方案二:采用后侧式导柱模架。由于前面和左右不受限制,送料和操作比较方便。因为导柱安装在后侧,工作时,偏心距会造成导套导柱单边磨损对模具使用寿命有一定影响。方案三:采用四导柱模架。具有导向平稳、导向准确可靠、刚性好等优点。常用于冲压件尺寸较大或精度要求较高的冲压零件及大量生产用的自动冲压模架。方案四:采用中间导柱模架。导柱安装在模具的对称线上,导向平稳、准确。只能一个方向送料。 (a)中间导柱 (b)后侧导柱 (c)对角导柱 (d)四导柱 (1)下模座 (2)导柱 (3)导套 (4)上模座图4-1 导柱模架根据以上方案比较并结合模具结构形式和送料方式,为提高模具寿命和工件质量,采用后侧导柱模架,操作者可以看见条料在模具中的送进动作。由于前面和左、右不受限制,能满足工件成型的要求。即方案二最佳。5 工艺参数计算5.1 排样方式的选择冲裁件在板料、带料或条料上的布置方法称为排样。排样的意义在于减小材料消耗、提高生产率和延长模具寿命,排样是否合理将影响到材料的合理利用、冲件质量、生产率、模具结构与寿命。排样的方法有:直排、斜排、对直排、混合排 ,根据设计模具制件的形状、厚度、材料等方面全面考虑。因此有下列三种方案:方案一:有废料排样。沿冲件全部外形冲裁,冲件与冲件之间、冲件与条料之间都存在搭边废料冲件尺寸完全由冲模来保证,因此精度高,模具寿命高,但材料利用率低。方案二:少废料排样。因受剪裁条料质量和定位误差的影响。其冲件质量稍差,同时边缘毛刺被凸模带入间隙也影响模具寿命。但材料利用率稍高。冲模结构简单。方案三:无废料排样。冲件与冲件之间或冲件与条料侧边之间均无搭边,沿直线或曲线切断条料而获得冲件,但对材料利用率最高。采用少、无废料排样法,材料利用率高,不但有利于一次冲程获得多个制件,而且可以简化模具结构,降低冲裁力,但受条料宽度误差及条料导向误差的影响,冲裁件的尺寸精度不易保证,故应采用方案一。分析零件形状,应采用单纵排的排样方式,零件可能的排样方式有图5-1和图5-2所示两种。 图5-1 横排示意图图5-2 纵排示意图5.1.1 搭边值的确定 排样中相邻两工件之间的余料或工件与条料边缘间的余料称为搭边。搭边是废料,从节省材料出发,搭边值应愈小愈好。但过小的搭边容易挤进凹模,增加刃口磨损,降低模具寿命,并且也影响冲裁件的剪切表面质量。一般来说,搭边值是由经验和查表来确定的,该制件的搭边值采用查表取得。 如表5-1所示:根据此表和工件外形可知L>50mm,可确定搭边值a和a1,a取2.2mm,a1取2.0mm,较为合理。表5-1 搭边a和a1数值(低碳钢) mm材料厚度t矩形件边长L50mm或圆角r2t的工件工件间a1沿边a0.25以下2.83.00.250.52.22.50.50.81.82.00.81.21.51.81.21.61.82.01.62.02.02.22.02.52.22.52.53.02.52.8宽度的确定:搭边的作用是补偿定位误差,保证条料有一定的刚度,同时保证零件质量和送料方便。根据模具的结构不同,可分为有侧压装置的模具和无侧压装置的模具,侧压装置的作用是用于压紧送进模具的条料(从料带侧面压紧),使条料不至于侧向窜动,以利于稳定地加工生产。本套模具无导料板为无侧压装置。故按下式计算: (5-1)式中: B-条料宽度; Dmax-条料宽度方向冲裁件的最大尺寸; a-冲裁件之间的搭边值;可参考表5-1; -条料宽度的单向(负向)偏差,见表5-2; C-导料板与最宽条料之间的间隙,其最小值见表5-3。 表5-2 剪料公差及条料与导料板之间隙 mm条料宽度B/mm材料厚度t/mm0112233550501001001501502202203000.40.50.70.80.50.60.70.80.90.70.80.91.01.10.91.01.11.21.3 表5-3 有侧压装置和无侧压装置对照表 mm材料厚度t(mm)无侧压装置有侧压装置条料宽度B(mm)<100100200200300<10010000.50.51122334450.50.50.50.50.50.50.50.51111111111555555888888所以,根据以上理论数据由公式(5-1)得出: 纵排: 由=60mm,a1=2,=0.5,代入公式(5-1)得: =60+2×2+0.5 =64.5-00.6横排:由D=60mm,a1=2,C=0.5,代入公式(5-1)得: =120+2×2+0.5 =124.50- 0.65.1.2 材料利用率的计算 冲裁件的实际面积与所用板料面积的百分比就叫材料利用率,它是衡量合理利用材料的经济性指标。关于材料利用率,可用下式表示: (5-2)式中: A-一个步距内冲裁件的实际面; B-条料宽度; S-步距。由图5-1和图5-2;公式(5-2)得: A=90×30+2×3.14×122-2×3.14×122 =2305 mm2 横排: 由S=62.2mm,B=124.5mm,A=2305 mm2,代入公式(5-2):得 =2305÷(124.5×62.2)×100% 29.7% 纵排: 由S=122.2mm,B=64.5mm,A=2305 mm2,代入公式(5-2):得 =2305÷(64.5×122.2)×100% 29.2%根据上述纵排、横排两个式子的计算对比,可确定纵排的材料利用率比横排的材料利用率高。结合模具结构总体结构,方便操作,最终选用图5-1横排作为零件的排样图,具体如图5-3所示。图5-3 排样示意图5.2 冲压力的计算 计算冲裁力是为了选择合适的压力机,设计模具和检验模具的强度,压力机的吨位必须大于所计算的冲裁力,以适宜冲裁的要求,普通平刃冲裁模,其冲裁力一般可以按下式计算: (5-3)式中: -材料抗剪强度,见表5-3(MPa); L-冲裁周边总长(mm); T-材料厚度(mm)。系数K是考虑到冲裁模刃口的磨损,凸模与凹模间隙之波动(数值的变化或分布不均)润滑情况,材料力学性能与厚度公差的变化等因数而设置的安全系数K,一般取13。当查不到抗剪强度时,可以用抗拉强度b代替,而取K=1.3的近似计算法计算。由于10钢的力学性能查表5-4可得:抗剪强度取350MPa。的数值取决于材料的种类和坯料的原始状态,可在设计资料及有关手册中查找,本设计取值的通过查下表确定,材料厚度t=2mm,取=300MPa。 表5-4 部分材料抗剪强度 /MPa材料名称牌号材料状态抗剪强度/MPa碳素结构钢10已退火260340152703802028040035 4005205.2.1 总冲裁力的计算 由于冲裁模具采用弹性卸料装置和自然落料方式。 (5-4) 式中: F1-落料时的冲裁力; F2-冲孔时的冲裁力。 冲裁周边的总长(mm)落料周长为: =2×3.14×30+4×3.14×12+75×2 =489.12 mm冲孔周长为: =4×3.14×12 =150.72 mm由 =1.3,L=489.12mm,t=2mm,=320Mpa,代入公式(5-3)得: =1.3×489.12×2×320 =406947.84 N由=1.3,L=150.72mm,t=2mm,=320Mpa,代入公式(5-3)得: =1.3×2×150.72×320 =125399.04 N由F1=406947.84 N,F2=125399.04 N,代入公式(5-4)可求总冲裁力得: =406947.84+125399.04 =532346.88 N5.2.2 卸料力、推件力的计算 当上模完成一次冲裁后,冲入凹模内的制件或废料因弹性扩张而梗塞在凹模内,模面上的材料因弹性收缩而会紧箍在凸模上。为了使冲裁工作连续,操作方便,必须将套在凸模上的材料刮下,将梗塞在凹模内的制件或废料向下推出或向上顶出。从凸模上刮下材料所需的力,称为卸料力;从凹模内向下推出制件或废料所需的力,称为推料力。 模具采用弹性卸料装置和推件结构,凹模型口直壁高度h=2mm,所需卸料力和推件力分别为:推件力、卸料力计算公式如下: (5-5) (5-6)式中: F推-推件力; F卸-卸料力; F冲-冲裁力; K卸-卸料力系数,见表5-5; K推-推件力系数,见表5-5; n-卡在凹模里的工件个数,。 表5-5 卸料力、推件力和顶件力系数 mm料厚/mmK卸K推K顶钢 0.1>0.10.5>0.52.5>2.56.5 >6.50.0650.0750.0450.0550.040.050.030.040.020.020.10.0630.0550.0450.0250.140.080.060.050.03铝及铝合金紫铜、黄铜0.0250.080.020.060.030.070.030.09K推-推件力系数通过查表5-5确定,推件力系数取K推0.055;由K推0.055,F冲=532346.88,代入公式(5-5)得: =2/2×0.055×532346.88 =29279.0784 NK卸-卸料力系数通过查表5-5确定,卸料力系数取K卸0.045;由K卸0.055,F冲=532346.88,代入公式(5-6)得: =0.045×532346.88 =23955.6096 N5.2.3 总冲压力的计算 压力机公称压力: =532346.88+29279.0784+23955.6096 =585581.568 N5.2.4 初选压力机 压力机可分为机械式和液压式,机械式分为摩擦压力机、曲柄压力机、高速冲床,液压式分为油压机、水压机,而在生产中一般常选用曲柄压力机,曲柄压力机分有开式和闭式两种,开式机身形状似英文字母C,其机身前端及左右均敞开,操作可见大,但机身刚度差,压力机在工作负荷作用下会产生变形,一般压力机吨位不超过2000KW。闭式机左右两侧封闭,操作不方便,但机身刚度好,压力机精度高。考虑到经济性能、加工要求和操作方便在此选开式压力机。根据以上计算数值,查下表5-6初选压力机为JB23-23型压力机。 表5-6 J23系列开式可倾压力机主要技术参数型号J23-10J23-16J23-25J23-35JB23-23公称压力/kN100160250350630滑块行程/mm455565100100最大闭合高度/mm180220270290400闭合高度调节/mm3545556080滑块中心线至床身距离/mm130160200200310滑块底面尺寸/mm前后150180220220360左右170200250250400工作台板厚度/mm35405029065模柄孔尺寸/mm直径3040404050深度35606060705.2.5 压力中心的确定 模具压力中心是指冲压时诸冲压合力的作用点的位置。为了确保压力机和模具正常工作,应使模具的压力中心与压力机滑块的中心相重合,否者,会使冲模和压力机滑块产生偏心载荷,使滑块和导轨之间产生过大的摩擦,模具导向零件加速磨损,降低模具和压力机的使用寿命。由参考文献2 可知:图5-3 压力中心图冲模的压力中心,可按下述原则来确定: (1)对称形状的单个冲裁件,冲模的压力中心就是冲裁件的几何中心。 (2)工件形状相同且分布位置对称时,冲模的压力中心与零件的对称中心相重合。 (3)形状复杂的零件、多孔冲模、级进模的压力中心可用解析计算法求出冲模压力中心。因为该零件的左右、上下均对称,所以该零件的对称中心就是该零件的压力中心,并且在柄投影范围内,设计合理。压力中心如图O点所示,如图5-3所示。6 刃口尺寸计算冲裁件的尺寸精度主要决定于模具的刃口尺寸精度,模具的合理间隙值也要靠模具刃口尺寸及制造精度来保证。正确确定模具刃口尺寸及其制造公差,是设计冲裁模主要任务之一。6.1 冲裁间隙的确定冲裁间隙是影响冲裁工序最重要的工艺参数,其定义为冲裁凸模与凹模之间的空隙尺寸,如图6-1所示。设计模具时一定要选择合理的间隙,以保证冲裁件的断面质量、尺寸精度满足产品的要求,所需冲裁力小、模具寿命高。冲裁过程中模具的失效形式一般有磨损、变形、崩刀和凹模刃口胀裂四种。间隙大小主要对模具磨损及胀裂产生影响,间隙增大可以使冲裁力、卸料力等减小,因而模具的磨损也减小。但当间隙继续增大时,卸料力增加,又影响模具寿命。一般间隙为(10%15%)t时的磨损最小,模具寿命较高。 图6-1 冲裁间隙图由于冲裁间隙对断面质量、工件尺寸精度、模具寿命、冲裁力等的影响规律并非一致,所以,并不存在一个绝对合理的间隙数值,能同时满足断面质量最佳、尺寸精度最高、模具寿命最长、冲裁力最小等各方面的要求。所以在实际生产中,其总的原则应该是在保证满足冲裁件剪切断面质量和尺寸精度的前提下,使模具寿命达到最长。目前在生产中,广泛采用经验法和查表法来确定合理的间隙植。本套模具采用查表法予以确定其间隙植。根据实用间隙表 6-1查得材料10钢的最小双面间隙Zmin=0.246mm,最大双面间隙Zmax=0.360mm。 表6-1 冲裁模初始双边间隙值 mm材料厚度 08、10、35、09Mn、Q23516Mn40、5065MnZminZmaxZminZmaxZminZmaxZminZmax小于0.5极小间隙(或无间隙)0.50.60.70.80.91.01.21.51.752.02.12.52.753.00.0400.0480.0640.0720.0920.1000.1260.1320.2200.2460.2600.2600.4000.4600.0600.0720.0920.1040.1260.1400.1800.2400.3200.3600.3800.5000.5600.6400.0400.0480.0640.0720.0900.1000.1320.1700.2200.2600.2800.3800.4200.4800.0600.0720.0920.1040.1260.1400.1800.2400.3200.3800.4000.5400.6000.6600.0400.0480.0640.0720.0900.1000.1320.1700.2200.2600.2800.3800.4200.4800.0600.0720.0920.1040.1260.1400.1800.2400.3200.3800.4000.5400.6000.6600.0400.0480.0640.0640.0900.0900.0600.0720.0920.0