欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    勾股定理第一课时说课稿-人教版〔优秀篇〕.doc

    • 资源ID:4832155       资源大小:113.04KB        全文页数:8页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    勾股定理第一课时说课稿-人教版〔优秀篇〕.doc

    18.1勾股定理第一课时一、教材分析本节课是九年制义务教育课程标准实验教科书(人教版)八年级下册第18.1“勾股定理”的第一课时。在本节课以前,学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质勾股定理,本章也是后继学习“解直角三角形”的知识基础。由此,让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。在探求勾股定理的过程中,蕴涵了丰富的数学思想。把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,是数形结合的典范;把探求边的关系转化为探求面积的关系,将边不在格线上的图形转化为可计算的格点图形,是转化思想的体现;先探求特殊的直角三角形的三边关系,再猜测一般直角三角形的三边关系,再解决一些特殊直角三角形的问题,这是特殊一般特殊的思想。在本节课,要创设问题串,提供学生活动的方案,让学生在活动中思考,在思考中创新,认识和理解勾股定理,并能利用勾股定理解决一些简单的有关直角三角形的计算问题。二、教学目标 知识目标:知道勾股定理的由来,了解勾股定理的证明,掌握勾股定理的内容,初步会用它进行有关的计算。能力目标:在探索勾股定理的过程中,让学生经历“观察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观察力以及科学探究问题的能力。情感目标:通过情境问题激发学生学习的兴趣,使学生在独立思考的基础上,积极参与数学问题的讨论,敢于发表自己的观点,并从交往中获益;介绍中国古代在勾股定理研究方面取得的伟大成就,展示这一定理的博大精深的同学,激发学生爱国情感。三、教学重点勾股定理的探索过程。四、教学难点用拼图方法证明勾股定理。五、教学方法与教学手段采用探究发现式教学,提供适当的问题情境给学生自主探究交流的空间,引导学生有目的地探索。六、教学过程(一)创设情境 激发兴趣 数学乐园的大门宽1.5米,高2米。由于数学乐园里需要一块正方形的木板,于是小明拿着准备好的一块边长为2.1米的木板想要进门,他能进去吗?(课件展示通常的方法) (这个设计充分激发了学生的好奇心和求知欲,学生看到这个问题刚开始一定会认为很简单,但是经过老师把他们的想法即分别横着竖着将木板放在门口的课件演示,他们会突然好奇起来,到底能不能进去,如何进去呢?)(二)阅读教材 猜想归纳探究1:比比看,你是未来的毕达哥拉斯吗?阅读教材第64页回答下列问题:(学生自主完成)、你能从地板中发现什么信息?、从思考所给的图中你又发现了什么?、三个小正方形的面积和边长间可能会有什么关系?(探究1的设计从题目上就令学生兴奋,跃跃欲试,再通过三个引导性的问题使学生的回答和思考向课题靠拢。)探究2:你来动手找规律 请同学们画一个直角边分别为3厘米和4厘米的 RtABC,用刻度尺量出斜边的长,并分别计算3和4的平方以及斜边的平方,观察他们之间的关系。(通过分组合作得出实验结果,使学生更进一步地确定自己先前的猜测是有可能的,从而使学生大胆总结出勾股定理中的三边关系。这一问题的结论是本节课的点睛之笔,应充分让学生总结,交流,表达。)此时,老师可用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式。一段紧张的探索过程之后,播放一段有关勾股历史的录音。(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感。)规律总结:勾股定理-直角三角形两直角边的平方和等于斜边的平方。 公式 a+ b= c公式变形 a=c-b ;b=c-a(强调两个公式变形是常会在计算中用到的)探究3:你来作证!(课件展示图1图2)已知:如图,在RtABC中,C= 90度 ,A、B、 C的对边分别为a,b,c求证:a2+b2=c2(1)、如图2,左右两边的正方形边长有怎样的关系?这两个正方形的面积呢?(2)、图2中,左边S=_,右边S=_。(3)、由于左右两边的面积相等,得_。(这三个问题的设置从学生已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心。)(小组讨论并在作业本上完成证明过程)(三)伟大发现 拓宽视野数学乐园的资料馆(课件展示四个方面的问题)1、商高定理 中国最早的一部数学著作周髀算经的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形矩得到的一条直角边勾等于3,另一条直角边股等于4的时候,那么它的斜边弦就必定是5。”由于勾股定理的内容最早见于商高的话中,所以在我国人们就把这个定理叫作“商高定理”。2、勾股定理的别称在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的,他发现勾股定理后高兴异常,命令他的学生宰了一百头牛来庆祝这个伟大的发现,因此又称此定理为“毕达哥拉斯定理”和“百牛定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多。3、与外星人交流的信号目前世界上许多科学家正在试图寻找其它星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言,音乐,各种图形等,我国数学家华罗庚建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。4、纪念勾股定理的邮票1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊一个学派和宗教团体 毕达哥拉斯学派,邮票上的图案是对数学上一个非常重要定理的说明。(四)有趣的勾股数1、请计算下列每个图中的X的值。(学生了解勾股定理的基本内容之后,通常都会摩拳擦掌的特别想知道运用勾股定理进行计算,为了不让学生欲速则不达,在这里先通过几个简单的勾股数图形来让学生体验其用法,同时又进一步让学生了解勾股定理的奇妙。)2、动动手、动动脑(1)在RtABC中, C=90度已知, a=5 , b=12, 那么 c =_。已知. b=9 , c=15 ,那么 a=_。 已知, A=30 , c=8 , 则a=_, b=_。(2)在RtABC中, C=90,c=10 ,a:b=3:4,那么 a=_。 (3)已知等腰三角形腰长为10,底边长为16,求这个等腰三角形的面积。(第2、3小题的设计是对勾股定理的直接简单运用,让学生更进一步体会勾股定理。)(五)回归情境 解决问题现在你知道小明怎样将边长为2.1米的正方形展牌从宽为1.5米,高为2米的数学乐园大门通过的吗?(这是一道贴近学生生活的实例,在勾股定理的运用中渗透了德育教育。)(六)小结提示 强调要点本节课主要学习了勾股定理,了解了勾股定理的相关知识,以及适用的条件和运用方法(在直角三角形中,找斜边)。在应用定理解决问题时应当注意这一点。(通过小结提示学生注意勾股定理的适用范围或条件,再次强化本节课的知识点,将知识点落实到位。)(七)新颖作业 自主完成请同学们在课本第69页习题18.1中找出与本课有关的题目并完成在作业本上。(作业的要求较高,自主寻找与本节内容匹配的题目,既检验了对课上内容的理解程度,又对知识点加深了巩固。另外还提供了几个与勾股定理有关的网址,希望同学们通过查找资料自主学习一些勾股定理的证明方法,拓展能力。)七、教学设计说明本节课根据学生的认知结构采用“观察-猜想-归纳-验证-应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。通过对特殊到一般的过程,让学生主动建立由数到形,由形到数的联想,从而使学生不断积累数学活动的经验,归纳出直角三角形三边数量之间的关系。在教学中鼓励学生采用观察分析,自主探索,合作交流的学习方法,培养学生主动的动手,动脑,动口的学习习惯和能力,使学生真正成为学习的主人除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神。练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。题目的设计中渗透了德育教育,拓展了学生的空间思维,使得一节几何课全面地考查了学生的各方面思维。小结提示起到了强化勾股定理运用条件的作用,从而使学生真正落实本课的知识点。作业的要求较高,自主寻找与本节内容匹配的题目,既检验了对课上内容的理解程度,又对知识点加深了巩固。1、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。4、不要觉得全心全意去做看起来微不足道的事,是一种浪费,小事做的得心应手了,大事自然水到渠成。5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。18、过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个"今天"过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎接每一件事,让生命的每一天都有滋有味。19、上天不会亏待努力的人,也不会同情假勤奋的人,你有多努力时光它知道。20、成长这一路就是懂得闭嘴努力,知道低调谦逊,学会强大自己,在每一个值得珍惜的日子里,拼命去成为自己想成为的人。1、人家伸出手拉你一把,也请你别忘了用力狗刨,别太在意姿势是否难看,因为最难看的其实并不是苦苦挣扎,而是把自己活成一个软体动物,死乞白赖地往对方身上倚靠。2、不成熟的爱是因为我需要你,所以我爱你;成熟的爱是因为我爱你,所以我需要你。3、人这一生啊,需要你做自己的关键时刻太多,反而是在这些小事上,去做做别人也没什么不好。一个人在努力向上爬的时候,背后其实是敞开的,就算掉下来没人接着,也尽量别让他人在你背后捅上一刀。4、你的生活不要太用力了,犯错误和呼吸一样平常和必须,只要你不偏执地一错再错。通常,你最大的错误就是急于证明自己,一个人50%的错误,长点儿记性就能解决和避免。5、能给人底气和自信的,从来都不是长相与装饰,而是一个人解决问题的能力。6、你可以狡黠,可以圆滑,可以装傻,但是你一定得坚持一道底线,这个底线就叫作人品。人品这个东西,平时没什么大用,有时甚至看起来很累赘,但是关键时刻守住一次,或许就能挽救你的钱,你的前途,乃至性命。

    注意事项

    本文(勾股定理第一课时说课稿-人教版〔优秀篇〕.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开