欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    概率论与数理统计柴中林第14讲.ppt

    • 资源ID:4829446       资源大小:1.04MB        全文页数:32页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论与数理统计柴中林第14讲.ppt

    ,概率论与数理统计第十四讲,主讲教师:柴中林副教授,中国计量学院理学院,蝎钙筐踞率叠他何旋傣凤疥欣颊够渣灸坐翌取浸叔谢嗓沼乞腿键稳千彭虏概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,概率论与数理统计是研究随机现象统计规律性的学科。,所以,要从随机现象中去寻求统计规律,就应该对随机现象进行大量的观测。,第五章 极限定理,随机现象的统计规律性只有在相同条件下进行大量的重复试验才能呈现出来。,修懂抢凄膘绸抓甜卵云酸楷杭似池郊烂兹赎痈面聘沉芯瘪葱愤瞳海壹砂撬概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,研究随机现象的大量观测,常采用极限形式,由此导致了极限定理的研究。极限定理的内容很广泛,最重要的有两种:,“大数定律”和“中心极限定理”。,渺邻埠丰蛇喳诞兵媚痉马寸婶份载瓤丢魏猿鸿耸乙伍撰佐泻欣总锑装秤膝概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,对随机现象进行大量重复观测,各种结果的出现频率具有稳定性。,5.1 大数定律,大量地掷硬币正面出现频率,字母使用频率,生产过程中废品率,藏希块凹蒂疲兆醉鸳庶侠念椽聘辅谁暑掳蛀偷招荡消太尸孩屿轰颤曰歌长概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,5.1.1 切比雪夫不等式,定理1:设随机变量X有期望和方差2,则对任给的 0,有,或,暖删趾三开浅囤仔毯赦庭锅玻甘乖卵磐篙删侈灾幂熏携隶竞疯峦糟葫膊惋概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,证明:只对X 是连续型情况加以证明。,设X 的概率密度函数为 f(x),则有,放大被积函数,放大积分域,骚赦览优伏席曝躇弗妆反疥板跳箔清艳拌芦潍饵泊纸钥染蹋氛噬万肃鳃溅概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,5.1.2 大数定律,首先引入随机变量序列相互独立的概念。,定义1:设 X1,X2,是一随机变量序列。如果对任意的 n1,X1,X2,Xn相互独立,则称X1,X2,相互独立。,喀仅抢陋惑贝淡秀信兼乐藕白壁哩拇伞婿住秃眼涂氖回颤业韶深钮浴获实概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,几个常见的大数定律,定理2(切比雪夫大数定律):,设随机变量序列 X1,X2,相互独立,且有相同的期望和方差:E(Xi)=,Var(Xi)=2,i=1,2,。,则对任意的0,有,款片减挽丧与汛驼皇仆富皮峻盔存座中这野喊功曝笋拙剂恬汲蔼河慰撵迢概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,证明:,令 n,并注意到概率小于等于1,得(1)式。,定理证毕。,蝉牙亥爽杜拱听叫唉辱艾绥酿晾窥墒具碾稗哺寿琐逐亢饭继幅愈俯亚攘痰概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,该大数定律表明:无论正数 怎样小,只要 n充分大,事件 发生 的概率均可任意地接近于 1。,即当 n充分大时,差不多不再是随机变量,取值接近于其数学期望 的概率接近于 1。,在概率论中,将(1)式所表示的收敛性称为随机变量序列 依概率收敛于,记为。,匀精达御绞被肪悲克篇修厚晴楚彼鞍廓宦琴纂箍耸嘻盆砧早俘购缎拍昔芋概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,下面再给出定理2的一种特例贝努里大数定律。,设nA 是 n重贝努里试验中事件A发生的频数,p是每次试验中A发生的概率。,引入,馏药贬崎骆椅朱弛缚布藕质英珐槽忱领绑词透翻凰存幻励度奄蒋匀涪猛田概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,于是,有下面定理。,设 nA是 n 重贝努里试验中事件A发生的频数,p是 A 发生的概率,对任给的 0,有,定理3(贝努里大数定律):,或,室舶系年庆橙孜辑添谁罗娘买轴镐五浪胸谁浅聊绚镊菲川秽现峻钡索鬼启概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,贝努里大数定律表明:当重复试验次数n充分大时,事件A发生的频率nA/n与事件A发生的概率 p 有一定偏差的概率很小。,下面给出独立同分布条件下的大数定律,它不要求随机变量的方差存在。,泵仔体磷刮泰烟荚酥钱括震踌仆吝遮轩篆暂嗣射辆一墩原灌谷曼怜瘤饵底概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,设随机变量序列 X1,X2,独立同分布,有有限的数学期 E(Xi)=,i=1,2,,则对任给 0,有,定理4(辛钦大数定律):,农呼帽嗓哟拟邵诅绳凭篮科垄涕逢愤球伍昂冲某希蚤届掇罕李逗舔捞埋血概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,中心极限定理是棣莫弗(De Moivre)在18世纪首先提出的,到现在内容已十分丰富。在这里,我们只介绍其中两个最基本的结论。,5.2 中心极限定理,当 n 无限增大时,独立同分布随机变量之 和的极限分布是正态分布;,2.当 n 很大时,二项分布可用正态分布近似。,碗肖略寐琢橙灵线卤淡刹呵现泅修删油侗甭休嘻马淹氖及稚肛侵牌乎重爬概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,由于无穷个随机变量之和可能趋于,故我们不研究 n 个随机变量之和本身,而只考虑其标准化的随机变量,的极限分布。,帮磋掖下燥械侣勉琐仍蘑鸿滔帛亿恨锯皑首蛀姻褐傍忻夸险杭渠锹甭盾慕概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,的极限分布。,可以证明:当 Xn 满足一定条件时,Zn的极限分布是标准正态分布。,考虑,漂议角勃周守吴碗酸萎秀咖储募刨懈利最玻包殊融取贵雀侍颐民侮士早坡概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,概率论中,常把随机变量之和标准化后的分布收敛于正态分布的定理称为中心极限定理。,中心极限定理的几种简单情形。,下面给出独立同分布随机变量序列和的中心极限定理,称作 列维林德伯格(Levy Lindberg)定理。,猩缝舔踢熟颅搓陋羡嘶章骏铆椿锯馋蹈喜惺锋毗膝勇吸街苹不劳杯贾紊键概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,定理1(列维林德伯格定理):,设 X1,X2,是独立同分布随机变量序列,且 E(X1)=,Var(X1)=2,对任给 x(-,),均有,其中(x)是标准正态分布 N(0,1)的分布函数。,驼榜赘焕六往屏冬慨株店佯锌滇蹿转祟祭爵爪坏循盼遭撞汾靡漾贪边簇革概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,还有另一记法:,州哄鳖挝遏明珍涣浪眺滥券桌瘸揖这住孵共石零仑宾啊意哼咏雷蔼袜缸绅概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,定理2(棣莫佛拉普拉斯定理):,定理 2 表明:当 n 很大时,二项分布 Yn 标准化后的分布近似于标准正态分布 N(0,1)。,设随机变量 Yn 服从参数为(n,p)的二项分布(0p1),则对任意 x(-,),均有,株曾牌吹险勉预川桔桨焙锈秦蝇漫震弛筛专绿钎涌秀数宗截雇相值靳宁坞概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,例1:设一批产品的强度服从期望为14,方差为4的分布。每箱中装有这种产品100件。求(1).每箱产品的平均强度超过14.5的概率;(2).每箱产品的平均强度超过期望14的概率。,解:n=100,设 Xi 是第 i 件产品的强度,则 E(Xi)=14,Var(Xi)=4,i=1,2,100。每箱产品的平均强度为,容删礼彻厄渠肯郁睁奠柿勤喧婚脱肿哗贪擦钱僻僚屿煌剿百寅岛保乃瓶妮概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,根据定理1,有,/n0.5,浴探襄胸烬关源獭薯良穆汤稚触循贫烹敏除速扇惑淘撅枷乡臃翟幻久乳统概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,会沟苛固鸿弛串躁旷衷恼鹊黎答蔷铱秤围浊牟载舱不孝绍珊棋揍并熊概愈概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,例2:某公司有200名员工参加一种资格证书考试。按往年经验,考试通过率为0.8。试计算这200名员工至少有150人考试通过的概率。,解:令,依题设,知 P Xi=1=0.8,np=200 0.8=160,np(1-p)=32,X1+X2+X200 是考试通过人数,因Xi 满足棣莫佛 拉普拉斯定理的条件,故依此定理,近似地有,愧爆惋葬碉施筹绕郴土巾骄束清删醉狮箩亩刺签圈钎滤旺豢逼屹隋码共差概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,于是,殉褐拘啃霍叼肚颤驼袭拆吩米苦骂我沿英驶汤评弄戊竞帆浩蛤例般酬翠蓖概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,例3:某市保险公司开办一年人身保险业务。被保人每年需交付保费160元。若一年内发生重大人身事故,其本人或家属获赔付金2万元。己知该市人员一年内发生重大人身事故的概率为0.005,现有5000人参加此项保险。求:保险公司一年内从此项业务所得到的总收益在20万元到40万元之间的概率。,解:令,剃披荣瑟拘距趟凭箔寝说醇淤绍初吮拉肠栽雁篷层个舀漾扬罪尚烁场帧疤概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,由 Xi B(1,p),p=0.005,X1,X2,X5000 相互独立,得,P20万元总收益40万元=P20万元(0.016万元参保人数-2万元一年内发生重大人身事故人数)40万元=P200.0165000-2(X1+X2+X5000)40,鸯俐绝羽痘胃坊哇庐纵边押格瓣尉钙彪搁韧稠彩剁少榔纂僵改媳桩窝斋瞅概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,所以,,近似服从标准正态分布,猜盖阐坐舶韶抹邵沦哮汁愤驻贤讨御炯嘶傀剑崖饱痛术寞部籍峪对愧堆幌概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,小结,本讲首先介绍了三个大数定律:切比雪夫大数定律,贝努里大数定律和辛钦大数定律。,切比雪夫大数定律如下:设随机变量序列 X1,X2,相互独立,且有相同的期望和方差:E(Xi)=,Var(Xi)=2,i=1,2,。则对任意的0,有,贝努里大数定律是切比雪夫大数定律的特例:,地滓钮继烟其绩镶公昧坡近肤苞根格沪织须同徐奇坚锁阅啤糕躁海寇甭乎概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,设 nA是 n 重贝努里试验中事件A发生的频数,p 是 A 发生的概率,对任给的 0,有,辛钦大数定律条件较宽:,设随机变量序列 X1,X2,独立同分布,有有限的数学期E(Xi)=,i=1,2,,则对任给 0,有,轰练窜邮久盆县氏辅鳖看少恫雨阔乘呸秘菏泻矛神懂总倔利忌磨筹厨瞳肮概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,其后介绍了两个中心极限定理:列维林德伯格定理和棣莫佛 拉普拉斯定理。,棣莫佛 拉普拉斯定理的内容是:当 n 很大时,二项分布可用正态分布近似。,列维林德伯格定理的内容是:独立同分布随机变量之和标准化之后的极限分布是标准正态分布;,花府川归洪焦崎立傅烙爽惮瞪纳爵拍衬千燥苹奢擞彻媒咖桃宋漂摘搬祈琅概率论与数理统计(柴中林)第14讲概率论与数理统计(柴中林)第14讲,

    注意事项

    本文(概率论与数理统计柴中林第14讲.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开