欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    学案6二项分布及其应用.ppt

    • 资源ID:4799466       资源大小:2.20MB        全文页数:35页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    学案6二项分布及其应用.ppt

    考点1,考点2,考点3,考 户 解 读,返回目录,考 向 预 测,返回目录,2012年高考,试题难度以中低档题为主,很可能与期望、方差一起在解答题中考查.,返回目录,1.条件概率 一般地,设A,B为两个事件,且P(A)0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作.条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即0P(B|A)1.如果B和C是两个互斥事件,则P(BC|A)=.,“A发生的条件下B的概率”,P(B|A)+P(C|A),返回目录,2.事件的相互独立性,3.独立重复试验 一般地,在相同条件下重复做的n次试验称为n次独立重复试验.,设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.如果事件A与B相互独立,那么A与,A与,A与 也都相互独立.,B,B,B,4.二项分布,返回目录,一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=(1-p)n-k,k=0,1,2,n.此时称随机变量X服从二项分布,记作X,并称p为.,B(n,p),成功概率,返回目录,考点1 事件的相互独立性,甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品 的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有 一个一等品的概率.,返回目录,【分析】(1)将三种事件设出,列方程,解方程 即可求出.(2)用间接法解比较省时,方便.,【解析】(1)设A,B,C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.P(AB)=P(BC)=P(AC)=,P(A)1-P(B)=P(B)1-P(C)=P(A)P(C)=,由题设条件有,即,由得P(B)=1-P(C),代入得 27P(C)2-51P(C)+22=0.解得P(C)=或(舍去).将P(C)=分别代入可得P(A)=,P(B)=.即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是,.,返回目录,(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P(D)=1-P(D)=1-1-P(A)1-P(B)1-P(C)=1-=.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.,返回目录,(1)对照互斥事件、对立事件的定义进行判断,哪些是互斥事件,哪些是对立事件,是解好题目的关键.“正难则反”,一个事件的正面包含基本事件个数较多,而它的对立事件包含基本事件个数较少,则用公式P(A)=1-P(A)计算.(2)审题应注意关键的词句,例如“至少有一个发生”“至多有一个发生”“恰好有一个发生”等.(3)复杂问题可考虑拆分为等价的几个事件的概率问题,同时结合对立事件的概率求法进行求解.(4)求相互独立事件同时发生的概率的方法主要有:利用相互独立事件的概率乘法公式;正面计算较繁或难以入手时,可以从对立事件入手计算.,返回目录,返回目录,2010年高考天津卷某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记为射手射击3次后的总得分数,求的分布列.,返回目录,【解析】(1)设X为射手在5次射击中击中目标的次数,则XB(5,).在5次射击中,恰有2次击中目标的概率为P(X=2)=.(2)设“第i次射击击中目标”为事件Ai(i=1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A,则P(A)=P(A1A2A3A4A5)+P(A1A2A3A4A5)+P(A1A2A3A4A5)=()3()2+()3+()2()3=.,返回目录,(3)设“第i次射击击中目标”为事件Ai(i=1,2,3).由题意可知,的所有可能取值为0,1,2,3,6.P(=0)=P(A1A2A3)=()3=;P(=1)=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=()2+()2=;P(=2)=P(A1A2A3)=;P(=3)=P(A1A2A3)+P(A1A2A3)=()2+()2=;P(=6)=P(A1A2A3)=()3=.所以的分布列是:,返回目录,返回目录,考点2 独立重复试验与二项分布,某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3?,【分析】因为6个员工上网都是相互独立的,所以该题可归结为n次独立重复试验与二项分布问题.,返回目录,【解析】(1)解法一:记“有r人同时上网”为事件Ar,则“至少3人同时上网”即为事件A3+A4+A5+A6,因为A3,A4,A5,A6为彼此互斥事件,所以可应用概率加法公式,得“至少3人同时上网”的概率为 P=P(A3+A4+A5+A6)=P(A3)+P(A4)+P(A5)+P(A6)=()=(20+15+6+1)=.,解法二:“至少3人同时上网”的对立事件是“至多2人同时上网”,即事件A0+A1+A2.因为A0,A1,A2是彼此互斥的事件,所以“至少3人同时上网”的概率为 P=1-P(A0+A1+A2)=1-P(A0)+P(A1)+P(A2)=1-()=1-(1+6+15)=,返回目录,解法三:至少3人同时上网,这件事包括3人,4人,5人或6人同时上网,则记至少3人同时上网的事件为A,X为上网人数,则 P(A)=P(X3)=P(X=3)+P(X=4)+P(X=5)+P(X=6),返回目录,(2)解法一:记“至少r人同时上网”为事件Br,则Br的概率P(Br)随r的增加而减少.依题意是求满足P(Br)0.3的整数r的最小值.因为 P(B6)=P(A6)=0.3,P(B5)=P(A5+A6)=P(A5)+P(A6)=()=0.3,P(B4)=P(A4+A5+A6)=P(A4)+P(A5)+P(A6)=()=(15+6+1)=0.3,所以至少4人同时上网的概率大于0.3,至少5人同时上网的概率小于0.3.,返回目录,解法二:由(1)知至少3人同时上网的概率大于0.3,至少4人同时上网的概率为 P(X4)=0.3,至少5人同时上网的概率为 P(X5)=0.3,所以至少5人同时上网的概率小于0.3.,返回目录,(1)独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=(1-p)k,k=0,1,2,n.此时称随机变量X服从二项分布,在利用该公式时,一定要搞清是多少次试验中发生k次的事件,如本题中“有3人上网”可理解为6次独立重复试验恰有3次发生,即n=6,k=3.,返回目录,返回目录,2010年高考大纲全国卷如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(1)求p;(2)求电流能在M与N之间通过的概率;(3)表示T1,T2,T3,T4中能通过电流的元件个数,求的期望.,返回目录,【解析】记Ai表示事件:电流能通过Ti,i=1,2,3,4.A表示事件:T1,T2,T3中至少有一个能通过电流.B表示事件:电流能在M与N之间通过.(1)A=A1A2A3,A1,A2,A3相互独立.故P(A)=P(A1A2A3)=P(A1)P(A2)P(A3)=(1-p)3,又P(A)=1-P(A)=1-0.999=0.001,故(1-p)3=0.001,得p=0.9.,返回目录,(2)B=A4+A4A1A3+A4A1A2A3,P(B)=P(A4+A4A1A3+A4A1A2A3)=P(A4)+P(A4A1A3)+P(A4A1A2A3)=P(A4)+P(A4)P(A1)P(A3)+P(A4)P(A1)P(A2)P(A3)=0.9+0.10.90.9+0.10.10.90.9=0.989 1.(3)由于电流能通过各元件的概率都是0.9,且电流能否通过各元件相互独立,所以B(4,0.9),E()=40.9=3.6.,返回目录,考点3 二项分布的随机变量的分布列,一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)设X为这名学生在途中遇到红灯的次数,求X的分布 列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的 分布列;(3)求这名学生在途中至少遇到一次红灯的概率.,返回目录,【分析】本题主要考查独立重复试验的概率和二项分布等知识.,【解析】(1)将通过每个交通岗看作一次试验,则遇到红灯的概率为,且每次试验结果是相互独立的,故XB(6,),以此为基础求X的分布列.由XB(6,),所以X的分布列为 P(X=k)=,k=0,1,2,3,4,5,6.(2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5.,其中:Y=k(k=0,1,2,3,4,5)表示前k个路口没有 遇上 红灯,但在第k+1个路口遇上红灯,故各概率应按独立 事件同时发生计算.P(Y=k)=()k(k=0,1,2,3,4,5),而Y=6表示一路没有遇上红灯,故其概率为P(Y=6)=.因此Y的分布列为:,返回目录,(3)这名学生在途中至少遇到一次红灯的事件为(X1)=X=1或X=2或或X=6,所以其概率为P(X1)=P(X=k)=1-P(X=0)=1-()6=0.912.,返回目录,解决离散型随机变量分布列问题时,主要依靠概率的有关概念和运算,其关键是要识别题中的离散型随机变量服从什么分布.像本例中随机变量X表示遇到红灯次数,而每次遇到红灯是相互独立的,因此这是一个独立重复事件,符合二项分布,即XB(n,p).分布列能完整地刻画随机变量X与相应概率的变化情况,在分布列中第一行表示X的所有可能取值,第二行对应的各个值(概率值)必须都是非负实数且满足其和为1.,返回目录,某一中学生心理咨询中心服务电话接通率为,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,求他们中成功咨询的人数X的分布列.,返回目录,由题意知XB(3,).P(X=k)=,k=0,1,2,3.分布列为:,返回目录,返回目录,1.“互斥事件”与“相互独立事件”的区别.它们是两个不同的概念,相同点都是对两个事件而言的,不同点是:“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否与另一个事件发生的概率没有影响.这两个概念一定要搞清楚,区分开.2.条件概率是在事件A发生的条件下事件B发生的概率,解决此类问题一定要分清事件A及事件B是什么,分清事件AB及事件A发生的概率是多少.,祝同学们学习上天天有进步!,

    注意事项

    本文(学案6二项分布及其应用.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开